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1.0 INTRRODUCTION

This report is a summary of the work carried out byr te

Scientific Studies Corporation (SSC) team in Phase II of the "Two-

Dimensional Processing for Radar Systems" Small Business

Innovation Research (SBIR) program for the U. S. Air Force

Research Laboratory, Sensors Directorate, Rome Research Site

(AFRL/SNRT). As such, the report includes also the work carried

out by the University of Central Florida (UCF) under contract to

SSC. Dr. Qingwen Zhang, post-doctoral researcher at UCF, and

Prof. W. B. Mikhael, Chairman of the Electrical and Computer

Engineering Department at UCF, executed the subcontract to SSC,

and their efforts are hereby acknowledged.

The work reported herein was carried out in the context of

space-time adaptive processing (STAP) for airborne surveillance

radar systems in support of an in-house research effort at

AFRL/SNRT. However, this work has application in other areas,

such as communication systems, active sonar array systems, optical

sensor systems, non-destructive inspection (NDI) systems,

geophysical array systems, mine detection systems, and medical

technology.

This report covers two related, but distinct, technical

thrusts of the program. The first thrust involves a generic STAP

architecture that covers a wide variety of algorithms and their

associated detection rules. In particular, this architecture

covers the classical matched filter (MF) , as well as three new

algorithms for the calculation of STAP weights. These novel

algorithms are low-dimensionality options to the MF, and

constitute a major technical contribution of the program.

Furthermore, these algorithms admit straightforward adaptive

configurations for the unknown- covariance case, just as the

adaptive matched filter (AMF) is the unknown-covariance
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configuration of the MF. All three new algorithms can be

configured in a variety of ways, based on the selection of key

parameters, and the generic architecture admits all such

variations. Thus, the generic architecture provides new insights

into the structure of STAP algorithms and detection rules. This

architecture constitutes another technical contribution of the

program.

The second technical thrust involves the model-based

multichannel detection formulation in the context of a two-

dimensional (2-D) representation for space-time processes in

general, and airborne surveillance phased array radar systems in

particular. For the phased array STAP and detection problem, such

a formulation requires a 2-D parametric model for the channel

output process under the target-absent hypothesis. The identified

2-D parametric model is used to design a whitening filter for the

interference process, as required for the parametric adaptive

matched filter (PAMF) methodology pioneered by Rangaswamy and

Michels (1997). Formulation of a 2-D PAMF methodology and its

algorithmic implementation constitute a third technical

contribution of the program. The 2-D PAMF offers major advantages

over the 2-D innovations-based detection architecture (IBDA)

methodology formulated and demonstrated in Phase I of this two-

phase program in the context of 2-D STAP (Roman and Davis, 1997).

The 2-D IBDA introduced in Phase I is a 2-D formulation of the

IBDA methodology pioneered by Metford and Haykin (1985) for the

scalar one-dimensional (l-D) case, and extended by Michels (1991)

to the multichannel 1-D case. Advantages of the 2-D PAMF over the

2-D IBDA include a simpler structure, since a whitening filter for

the target process is unnecessary. Another advantage is the

availability of multiple detection rules that can be utilized in

the context of an extended 2-D PAMF. Each alternative detection

rule offers distinct features, such as constant false alarm rate

(CFAR) detection.
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1.1 Airborne Surveillance Phased Array Radar Problem Statement

A state-of-the-art phased array radar surveillance platform

in a modern scenario has multiple functions, including target

detection, target tracking and track association, and possibly

target identification. The focus herein is on moving target

detection, which is a precursor to the other functions. A typical

airborne surveillance radar scenario involves a linear array radar

consisting of J equally-spaced, identical antenna elements (or

identical beamformed subarrays) in a side-looking configuration on

an airborne platform moving at a constant speed in level flight.

The array is aligned with the aircraft's longitudinal axis, and

the aircraft velocity makes a crab angle y with the aircraft's

longitudinal axis. The radar array is radiating a coherent pulse

train of N-pulse duration, at a constant radiation frequency, and

at a constant pulse repetition frequency (PRF). Each antenna

element (or group of elements) is referred to as a channel, and

the ith channel output (after pulse compression, demodulation, and

sampling) corresponding to a single range resolution cell (gate)

is a complex-valued discrete-time sequence denoted as {xi(n) In=0, 1,..

.,N-1}. The J scalar sequences are concatenated to form a vector

sequence {x(n) I n = 0, 1, . . . N-1}. Process {x(n)} is assumed to be

stationary, ergodic, zero-mean, and Gaussian-distributed.

The received signal in an airborne surveillance phased array

radar can be referred to as a space-time process, wherein the

spatial connotation arises from the spatial diversity of the

antenna array elements. In general, this received signal contains

a moving target component, as well as receiver (broadband) noise,

jammer noise (broadband interference), and ground clutter

(narrowband interference) components. The system's objective is

to detect the moving target given the noise- and interference-

corrupted received signal. This problem admits a dual-hypothesis
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formulation, with H0 representing the null hypothesis (target not

present), and H, representing the alternative hypothesis (target

present). In a typical scenario, the moving target detection

processor makes a detection decision each coherent processing

interval (CPI) for each range gate, which requires processing a

finite-duration sequence {x(n)In=0,1,...,N-1} for each range gate.

To date, most of the development and analysis of optimum

joint-domain adaptive algorithms and sub-optimum block-covariance

algorithms for STAP involves the 1-D multichannel (vector)

representation of the radar space-time signal. Such past work

encompasses target detection and interference rejection in

airborne surveillance radar arrays, as represented in the work of

Brennan and Reed (1973), Jaffer et al. (1991), and Ward (1994).

The algorithms discussed by these authors are referred to often as

the conventional (or classical) STAP algorithms. More recently,

Michels (1991) and RomAn and Davis (1993a; 1993b) have adopted the

1-D vector representation using multichannel auto-regressive (AR)

and state-space models, respectively, for joint-domain

innovations-based detection.

1.2 Maximum Correlation And Other STAP And Detection Methods In

The Context Of A Generic Detection Architecture

A summary of each novel STAP algorithm is provided next. In

the first new STAP algorithm the principle of orthogonal

projections (OP) is applied to generate a sequence of residuals.

This OP algorithm is distinct from the least-squares predictive-

transform (LSPT) algorithm of Guerci and Feria (1996) in three

important aspects. First, the LSPT includes a transform step,

whereas the OP does not. Second, the LSPT is formulated as the

optimal solution to the improvement factor criterion, which leads

to a detection rule involving the minimum eigenvalue of the

residual (prediction innovation) covariance matrix. This minimum
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eigenvalue criterion is associated naturally with the transform

step. In contrast, the OP utilizes the MF detection rule, which

involves inner products of the residuals. Third, the LSPT is a

block processing method in the predictive step as well as in the

transform step. In the predictive step of the LSPT (the step in

common with the OP method), the full-dimension (spatial and

temporal) array output vector is segmented into two sub-vectors,

and one sub-vector is utilized to predict the other. The

dimensions of the two sub-vectors add up to the full dimension of

the array output vector (from the dimensionality-reduction stand-

point, a wise choice is to select each of the two sub-vectors to

be of dimension equal to one-half the full-dimension, as

considered in Section 4.2 for one option of the OP algorithm). In

contrast, in its most general form the OP is a hybrid processing

method, with block-processing as well as sequential-processing

characteristics. This is a consequence of the fact that the

dimensions of each of the two sub-vectors can be selected such

that their sum is less than the full-dimension. Via this

mechanism the OP method introduced herein attains a higher level

of dimensionality reduction than the LSPT.

One particular configuration of the OP algorithm leads to an

implementation identical with the parametric adaptive matched

filter (PAMF) using the Yule-Walker (YW) and Levinson-Durbin (LD)

AR model identification algorithms (Section 4.1).

The second novel algorithm is based on the concept of

canonical variables and canonical correlations. This algorithm is

referred to as maximum correlation (MC) since it is based on

maximization of the correlation between the "past" and the

"future" of the array output random process. The MC method is an

extension of earlier work by SSC in the specific context of

sidelobe canceling for adaptive arrays (Roman, 1998a).

Specifically, Roman (1998a) demonstrated that the conventional
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sidelobe canceler problem can be formulated in the context of

canonical correlations, and the solution attained is equivalent to

the well-known minimum mean-square-error solution. It is possible

to show that the MC approach is equivalent also to the reduced-

dimension generalized sidelobe canceler (GSC) formulated by

Goldstein and Reed (1997). Since the multistage Wiener filter

(MWF) (Goldstein et al., 1998) is a sequence of orthogonal

decompositions of the same form as the GSC, it is reasonable to

expect that an equivalence exists between the MC method presented

herein (which is a generalization of the MC method for the

sidelobe canceler) and the MWF. Further investigation of this

issue remains for future work.

The MC algorithm is a hybrid processing method, with block-

processing and sequential-processing characteristics. The method

also allows for configurations with significant reduction in

dimensionality, in relation to the MF and the LSPT. This is due

to the fact that the MC algorithm has two mechanisms for attaining

reductions in dimensionality. In addition, the MC formulation

results in simple expressions for entropy and mutual information

of the array output process (Section 5.1). These concepts

facilitate the development of probabilistic criteria for

dimensionality reduction (Section 5.2).

The third new algorithm consists of the application of the

orthogonal projection principle to the array output data after

transformation onto the canonical variables basis, and therefore

is referred to as orthogonal projection using canonical variables

(OPCV). This algorithm combines the best features of the OP and

MC methods, and is more powerful than either. In particular, the

OPCV includes an optimal mechanism for dimensionality reduction of

the data residual, whereas the OP lacks such a mechanism.

Furthermore, the OPCV data residual is less than or equal to the

MC data residual for all possible configurations. Beyond these
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features, the OPCV provides unique insight into the structure of

orthogonal projection in the context of STAP.

All three algorithms (OP; MC; OPCV) admit configurations that

are fully optimal with respect to the associated criterion, but

their most important practical aspect is to provide alternatives

to the optimum MF in their reduced-dimensionality configurations.

The algorithmic discussion presented herein is from the

analytical point of view, as opposed to the computational point of

view. That is, a formulation is presented for each algorithm,

without addressing the issue of numerical implementation. Also,

all algorithmic formulations are presented for the known-

covariance case in order to emphasize the theoretical aspects, as

well as to simplify the notation. However, each algorithm can be

implemented adaptively, and adaptive issues are considered briefly

for each algorithm. An important issue in the context of adaptive

systems is that dimensionality reduction leads to a reduction in

secondary data requirements, and/or an increase in detection

performance, in relation to the AMF.

1.3 STAP and Detection Via the Two-Dimensional Representation

As stated previously, prior work in model-based STAP has been

focused on the 1-D vector representation of the channel output

process. Alternatively, a space-time signal can be represented as

a 2-D scalar process. The 2-D representation is essential for

visualizing and understanding the spectral energy and correlation

characteristics of the total signal, and of the ground clutter

component in particular. This 2-D representation also offers

algorithmic and modeling advantages. With respect to model-based

detection for the airborne surveillance phased array radar STAP

problem, 1-D models offer dynamic and static degrees of freedom in

the temporal axis, but only static degrees of freedom in the
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spatial axis. In contrast, 2-D models offer dynamic and static

degrees of freedom in both axes (space and time). Thus, a model-

based detection methodology using 2-D scalar models is inherently

better-suited to the cases wherein channel-to-channel correlation

exhibits a complicated structure. Such cases occur physically

when the platform and scenario parameters lead to a non-integer-

valued clutter ridge slope parameter, and/or to non-zero

misalignment between the array longitudinal axis and the platform

velocity vector, and/or to non-zero internal clutter motion.

These conditions are common in airborne surveillance radar

scenarios.

The 2-D, least-square, frequency domain (2D-LS-FD) technique

formulated by Mikhael and Yu (1994) was adopted in Phase I as the

baseline 2-D model identification method. This technique

approximates a given 2-D complex-valued field with a 2-D rational

function model of the auto-regressive moving-average (ARMA) class.

Of course, the ARMA class includes the AR and the moving-average

(MA) classes. In the 2D-LS-FD technique the ARMA coefficients are

obtained as the solution to a set of linear equations. Excellent

results have been obtained in the image noise canceling problem

(Mikhael and Yu, 1994), which is related to clutter cancellation

in radar space-time processing. The 2D-LS-FD technique was

applied successfully in Phase I to clutter modeling. However,

detection results obtained in Phase II using the 2D-LS-FD

technique in the context of a 2-D PAMF were very poor in relation

to those obtained with other methods, and were significantly below

those obtained using the AMF implemented via sample matrix

inversion. This poor performance is a result of the high noise

present in the frequency-domain representation (magnitude as well

as phase) of the channel output process, as required by the

algorithm (in the 2D-LS-FD, model identification is carried out in

the frequency domain). As a consequence, other 2-D model

identification techniques were considered. UCF and SSC settled on
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the 2-D AR least-squares (2DARLS) algorithm as the preferred

technique to apply in the context of the 2-D PAMF. The 2DARLS is

conceptually simple and provides robust model identification

performance. For example, the closely-related 1-D multichannel AR

LS algorithm has out-performed a suite of algorithms in recent

studies (Roman et al., 2000). In addition, the 2DARLS admits

various numerically stable and efficient software implementations

(Appendix A). The 2-D PAMF formulation and its architecture using

the 2DARLS identification algorithm is another major contribution

of this program.

1.4 Report Overview

The generic PAMF architecture is introduced first in Section

2.0, along with notation and definitions that are used in other

sections. Then the MF, OP, MC, and OPCV STAP algorithms are

summarized in Sections 3.0 through 6.0, respectively. Model-based

multichannel detection in the context of the 2-D representation of

the channel output vector process is discussed in Section 7.0,

including the 2-D PAMF formulation and the 2DARLS identification

algorithm. A summary and suggestions for further work are

presented in Section 8.0. Appendix A summarizes the LS

identification algorithm for multichannel AR processes, and

presents computational options for its software implementation in

the context of the PAMN for STAP in airborne surveillance phased

array radar systems. These procedures and software options apply

to the 2DARLS with straightforward modifications.
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2.0 GENERIC BLOCK STAP AND DETECTION ARCHITECTURE

A standard airborne surveillance radar system scenario and

side-looking linear array configuration with typical STAP

parameters is assumed herein. As stated earlier, the number of

channels is J, the number of pulses in a CPI is N, and {x(n) In = 0, 1,.
.. , N-1} is the received vector sequence for the range bin to be

processed to attain a detection decision. This data set is

referred to as the primary data. Also of relevance is the

secondary data set, which is a collection of channel output

sequences for K range bins in the neighborhood of the primary

data. In the context of secondary data sets, a "neighborhood" is

defined in many ways, and any standard approach suffices for our

purposes provided that the secondary data set is selected to be

representative of the null hypothesis condition (target not

present) and statistically-independent of the primary data. This

secondary data set is denoted herein as { k(nlH0)oIfn=0,1,...,N-1;k=1,
2,... ,K}. For notational simplicity, it is assumed herein that N

is an even number. This is hardly a restriction in the practical

sense since in most radar systems N is selected to be a power of

two.

The generic STAP architecture proposed herein is presented in

Figure 2-1, and the delay stack and advance stack blocks that

appear in this figure are defined in Figures 2-2 and 2-3,

respectively. The steering vector sequence {g(n) In =0, 1,...,N-1} is

formed by un-stacking the so-called JN-element steering vector e

into N J-element vectors (this un-stacking is the inverse of an

Nth order advance stack operator). That is,

2(0) 1
(2-1a) e =

e(N- 1)J
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(2-1b) e(n) - (ej 2 nnfd ) n=O, 1, ... ,N-1

eJ2n(J-1)fs

where fd and fs denote normalized Doppler and spatial frequencies,

respectively.

With respect to Figure 2-1, stacked (or block) vectors Xp(n),

e•.p(n), and XF:Q(n), and e F:Q(n) are defined as indicated in Figures

2-2 and 2-3, respectively. That is, X_.p(n) and e_,p(n) are JP-
element vectors, and XF:Q(n) and eF:Q (n) are JQ-element vectors.

Subscript P denotes that vector _X,.p(n) represents the past of the

process {x(n)}, with respect to time instant n, and subscript F
denotes that vector _XF.Q(n) represents the future of the process

{x(n)}, with respect to time instant n. Data item x(n) can be

included either in the past or in the future (as selected herein),

without loss of generality. Of course, these considerations apply

equally for the steering sequence, {e(n)}. For simplicity, the

discrete-time argument, n, is dropped from the past and future

block vectors in instances where the intended meaning is clear.

Integers P and Q have specific meaning in each weight

calculation algorithm, as discussed in the sections that follow.

In order to simplify notation, and without loss of generality, it

is assumed herein that

(2-2) P_>Q

Also, the following constraint must be satisfied by the integers P

and Q:

(2-3) P+Q<N
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This constraint states that the number of blocks in the data block

vectors is, at most, equal to the number of available data

sequence elements. Equality is required, for example, in the LSPT

algorithm (Guerci and Feria, 1996) ; however, in the OP and MC

algorithms high levels of dimensionality reduction are attained

with P + Q << N.

The data-based block vectors have block covariances that are

defined in terms of the elements of the matrix auto-covariance

sequence (ACS). Let Rxx(m) denote the mth lag of the data ACS

under the null hypothesis, defined as

(2-4) Rx.(m) = E[x(njHo)XH(n-mlHo)]

Unless stated otherwise, hereinafter all covariance matrices are

assumed to be defined for the null hypothesis condition, and all

explicit notational indications of the null hypothesis are

omitted. Then, the block covariance matrices are defined as

Rxx(0) Rxx (1) ... Rxx(P - 1)-

( H (1) Rxx(O) ... axx(P - 2)S•ppp E[Xpsp:p p]2[ H: ] ..(2 -5 ) R : ,

H HLRxx(p - 1) RHX(p- 2) •..• Rxx(0)

H~(O HRxx(0) all(l) ... aRx(e - 1)

(2-6) -RF:QQ = E[XQXQ] = x

Rxx(e- 1) Rxx(Q - 2) ... Rxx(O)
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Rxx(1) Rxx(2) ... Rxx(P)

(2-7) R Q , E[x:QX :p]P RJxx(2) Rxx(3) xx(P +1)

_Rxx(Q) Rxx(Q+l1) ... Rxx(P + Q-I1

In these definitions, the Zapf Chancery font size 14 is used for

the data block covariances, and the subscripts denote whether the

matrix is a past block covariance (P), or a future block

covariance (F), or a future-to-past block cross-covariance (F;P).

The subscripts (P and 0) also denote the number of block rows

(subscript preceding the comma) and the number of block columns
(subscript following the comma) . Block covariances RpR and

1Y:QQ are square, Hermitian, as well as block Hermitian and block

Toeplitz (a block Toeplitz matrix is a matrix in which the (i,j)th
block element is a function of i-j). Block covariance R•:Q P:p is

rectangular (unless P=Q) as well as block Hankel (a block Hankel

matrix is a matrix in which the (i,j)th block element is a function
of i+j). RF:Q,P:p is also block symmetric when P= Q.

In the most general version, weight matrices V and W in

Figure 2-1 are dimensioned JQxL and JPxL, respectively, and both

the data residual vector e(n) and the steering residual vector u(n)

are L-element column vectors, with L•JQ. Weight matrices V and

W are generated by each of the STAP algorithms considered herein

as the solution to distinct optimality criteria. From Figure 2-1,

the data and steering residual vector sequences are given as

(2-8) g(n) = WHX :Q(n) - VHxp(n) = u(n) - D(n) n = P, P+1,..., N-Q

(2-9) (n) = WHeF:Q(n) - VHep(n) n = P, P+1,..., N-Q

13



respectively. The first available residual is at time instant P

because PŽQ, and the last available residual is at time instant
N-Q because the future block vector, XF:Qf(n), has Q block elements.

Vector sequences {x(n)) and {ff(n)} are intermediate variables that

have meaning only for some algorithms.

Weight matrix C in Figure 2-1 is dimensioned LxL, and it is

required in some algorithms in order to normalize and de-correlate

the residual vector C(n) so that its covariance matrix is equal to

an identity matrix. Then, the normalized (unit variance) and

uncorrelated (both spatially and temporally) data residual vector

sequence and the fully-processed steering residual vector sequence

are given as

(2-10) v(n) = cHF(n) n = P, P+1,..., N-Q

(2-11) s(n) = cHU(n) n = P, P+1,..., N-Q

respectively. Weight matrix C is determined such that the

following condition is satisfied:

(2-12) C R(O)C= CH = IL

where R, (O) and n denote the covariance matrix of the residual E(n),

(2-13a) R(0 = E [E(n)H(n) ]

(2-13b) 92 = W H RF:Q,Q W-V HRPp, F:QW WWHRF:Q,p:pV + VHRp.,pV

The closed form expression in Relation (2-13b) is very useful.
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x(n) DELAY xDEL x nP+ DEAY x(n-P)

Sx(n-1)

x(n-P) j

Figure 2-2. Pth order delay stack definition.

x(n) ADVANCE x(n+l) x(n+Q).I ADVANCE x(n+Q-1)

X,:Q(n) = ,x(n+k I k =0,1,.. ,Q-l) x 7: Q(n)

Lx(n+Q-1) ]

Figure 2-3. Qth order advance stack definition.
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A weight matrix C that satisfies Relation (2-12) can be

determined from the factors in a decomposition of the covariance

Q. Notice that Relation (2-12) implies Q is non-singular. This

is a reasonable requirement because a singular Q is indicative of

an ill-posed problem. Now consider any factorization of Q into

the product of a matrix B and its Hermitian transpose. That is,

(2-14) Q = BBH

Then, it is straightforward to show that Relation (2-12) is

satisfied with a weight matrix C determined as

(2-15) CH= B-1

The singular value decomposition (SVD), the LDL decomposition, the

Cholesky factorization, or any other such factorization can be

used to generate the matrix factor B. Each matrix factor type has

unique analytical and numerical properties.

Each of the two sequences {y(n)} and {s(n)} is stacked in block

vector form according to the convention in Figure 2-3 to generate

GL-element block column vectors YG and SG, respectively. Integer

G denotes the number of elements in the residual vector sequence;

that is,

(2-16) G=N-P-Q+1

where the nominal N-element input data sequence is assumed.

Parameters P and Q are key to the definition of each

algorithm, and can be viewed as analogous to model order in

parametric models (Michels et al., 1998; Roman et al., 1997,

1998). That is, the specific values selected for these parameters

establish the particular structure of each algorithm

17



configuration, and thus impact performance directly. In the OP

and MC STAP algorithms considered herein, parameter L (which

denotes the number of elements in the residual vectors) also plays

a similar role, whereas for the MF algorithm it is specified as

Je. For the OP and MC algorithms, the selection of parameter L

directly impacts detection performance as well as computational

requirements (via reductions in dimensionality).

The detection test statistic block in Figure 2-1 is defined

(for the Gaussian-distributed data case considered herein) as

N-0 2

(2-17) A -= I-~IXHnvnSH N-QsH s
-GG -, §H(n)s(n)

n=P

This test statistic is of the same form as the one proposed by

Rangaswamy and Michels (1997) for the PAMF. However, the PAMF

test statistic differs in two important aspects: first, the PAMF

residuals are J-element vectors, and second, the PAMF residual

sequence is of duration N-PMI (where PMI is a function of the model

identification algorithm used in conjunction with the PAMF). Test

statistic A is compared with a threshold TD in order to select

between the null and alternative hypotheses. The threshold is

calculated such that a pre-determined false alarm rate is met,

following the Neyman-Pearson (NP) detection criterion (the NP

criterion is to maximize the probability of detection at a fixed

probability of false alarm).

2.1 Constant False Alarm Rate (CFAR) Issues

A pre-determined threshold can be used for a detector with

the constant false alarm rate (CFAR) property, wherein detection

18



performance is independent of the covariance matrix of the total

disturbance (clutter, jamming, and receiver noise). In theory,

only a few select detectors have the CFAR property. One such

detector is the MF, with a detection rule similar in form to the

middle expression in Equation (2-17). This similarity suggests

that some of the detectors discussed herein that use Equation (2-

17) may have the CFAR property, or exhibit CFAR-like performance

over a range of conditions. This point of view is supported by

the argument developed next.

Consider the term §SHVG1 2 (the numerator of Equation (2-17))1 -G

under the null hypothesis, and assume that the data residual

vector sequence {E(n)) is temporally uncorrelated. Then, given

Equations (2-10) through (2-16), the expected value of the

numerator of the test statistic A is

(2-18a) E[I SH G12] = E[sH VH 1=]HE[v HGIeG

0[ ] ... [0] 1
(2-18b) E[I §HI:s12 ] = •.. [0] S

G-G G-G

[0] [0] ... 6HQ

where C denotes an appropriate estimate of the weight matrix C.

The non-diagonal block elements in the right-hand-side of Equation

(2-18b) are zero-valued LxL matrices because the data residual

sequence {c(n)} is assumed to be uncorrelated in time. If C is a

sufficiently-accurate estimate of C, then Equation (2-12) implies

that each block diagonal element of the matrix on the right-hand-

side of Equation (2-18b) approximates an LxL identity matrix.

That is,
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(2-19) ,=6Q

where • denotes an estimate of the LxL identity matrix. Then the

block covariance of the data residual block vector VG is an

estimate of the GLxGL identity matrix, and the expectation of the

numerator of the detection test statistic becomes

(2-20) E[SH V21 = S iGLsG S= S
G-G G-G

where IGL is an estimate of the GLxGL identity matrix. The

rightmost term in Equation (2-20) is the same as the denominator

of the detection test statistic, A. Thus, the expected value of

the detection test statistic is unity, irrespective of the

structure of the covariance matrix of the total disturbance. Such

is the requisite condition for CFAR performance.

In adaptive implementations of the STAP methods (wherein all

covariance matrices are substituted by their estimates), the key

assumptions in the above-outlined argument are that: a) the data

residual vector sequence {&)j is uncorrelated, and b) 6 is a

sufficiently-accurate estimate of C. In addition, CFAR requires

that the temporal whitening of the residual and the estimate of

weight matrix C be attained with estimator structures that are

independent of the disturbance covariance matrix. The OP and MC

STAP algorithms discussed herein have the potential for generating

an uncorrelated data residual vector as well as an accurate

estimate of the weight matrix (see Remark 2.2.4 in Section 2.2).

However, the requirement of estimator independence from the

disturbance covariance matrix is difficult to meet. In addition,

the theoretical assessment of that issue is difficult to attain

also. Nevertheless, the OP and MC STAP methods and associated
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detector rules have the potential for CFAR-like performance at

least over a range of disturbance conditions.

2.2 Remarks

The remarks below address various relevant issues, including

the preferred approach for generating the data residual covariance

matrix, and variations of the generic STAP architecture.

Remark 2.2.1. A variation to the structure defined in Equations

(2-8) and (2-9) consists of having the input data sequence of

duration N+P+Q, wherein P additional sequence elements can be

viewed as being "negative time" sequence elements, and Q sequence

elements are added as "positive time" sequence elements.

Specifically, the data sequence is of the form {X(n)I-P,...,-1,0,1,...
,N-1,N,N+1,...N+Q-1}, and similarly for the steering sequence. In

such a structure the residual sequences are both of duration N,

with initial time 0. The key distinction in this variation is

that it utilizes more input data. That difference involves

practical implications that must be taken into account, specially

in comparative performance evaluations. The case where the input

data sequence is of duration N is the baseline in this work.

Remark 2.2.2. The architecture in Figure 2-1 can be generalized

further by allowing the stacking of the primary data into two

column vectors of any possible combination of number of elements,
rather than as discrete multiples of J. For example, XF:Q can be

selected to be a scalar, irrespective of the value of J, and
likewise, XP can be selected to be a column vector such that its

number of elements is in the range {1, 2, . . ., J(N-1)}. This

generalization manifests itself in some of the algorithms as

allowing the number of elements in the residual vectors to be

selected among the allowable range of discrete values, rather than

as a multiple of J. Such generalization may offer advantages in
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some applications, but the inherent structure of the space-time

data appears to favor the partition modulo J. Nevertheless, this

option has attractive features and should be investigated further.

The selection of X,:, as a scalar, and of Xp as a J(N-1)-

element column vector is a generalization of the reduced-dimension

GSC of Goldstein and Reed (1997). One distinction is that the GSC

structure includes a blocking matrix, whereas the architecture in

Figure 2-1 does not.

Remark 2.2.3. Another generalization to the architecture

presented herein is to utilize, in an ad hoc manner, other

expressions for the detection rule. Two such candidates are the

adaptive coherence (AC) proposed independently by Scharf and

McWhorter (1996) and by Conte et al. (1995; 1996), and the

generalized likelihood ratio test (GLRT) proposed by Kelly (1986).

Remark 2.2.4. In practical situations wherein the true covariance

9i is unknown, an estimate must be utilized to generate weight

matrix C. The OP and MC STAP algorithms include formulas to

estimate n, and such an estimate is referred to herein as the

model residual covariance. Alternatively, a maximum likelihood

(ML) estimate can be generated as an ensemble average over the

residual sequences of the secondary data set. The ML estimate is

referred to herein as the sample residual covariance. Simulation-

based analyses reported elsewhere (RomAn, 1998b) for the PAMF in

the context of airborne surveillance phased array radar systems,

indicate that using the sample residual covariance (instead of the

model residual covariance) to design the weight matrix C leads to

reduced threshold variability and higher probability of detection.

It is reasonable to expect that such performance extends to the OP

and MC methods; however, appropriate simulation-based analyses

should be carried out.
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3.0 MATCHED FILTER (MF)

The MF detection algorithm, proposed independently by Cai and

Wang (1990), Chen and Reed (1991), and Robey et al. (1992), is

obtained via maximization of the generalized likelihood assuming

the total disturbance covariance is known. Its adaptive

variation, the AMF, is obtained by using the ML estimate in place

of the unknown covariance. Both methods, MF and AMF, have the

CFAR property for Gaussian-distributed disturbance.

The MF algorithm fits into the architecture in Figure 2-1 as

follows. For the MF, the key integers are 0 and P, which assume

the following values:

(3-1) Q=N

(3-2) P=0

In this algorithm integer L is determined directly by J and 0 as

(3-3) L=JO=JN

Also, given P and Q, it follows from Equations (2-16) and (3-1)-

(3-2), and from Figure 2-1, that

(3-4) G = 1

(3-5) V = [o]

Weight matrix W is dimensioned JNxJN, and is obtained as

(3-6) W = R-1/2
"W F:N,N
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,•-1/2

where -1/2 denotes the matrix inverse square-root of the block

covariance of the total disturbance. For a positive-definite

covariance, the matrix square-root is unique, and can be generated

via the SVD. However, most practical implementations would avoid

calculation of the matrix inverse square-root.

Consider now the data and steering sequence residuals. For

this algorithm each of these two is a single JN-element vector

(not a sequence); specifically,

( )= -1/2
(= F:N,N -N

(3-8 = R-1/2 e
(3-8) U : "-'y:N,N -N

And the data residual covariance under the null hypothesis is

given as

(3-9) Q' = IjN

since W is the whitening filter for the JN-element data vector

XN. It follows from Equation (2-12) that weight matrix C is also

the JNxJN identity,

(3-10) C = IJN

Finally, the test statistic for this algorithm attains the form

2 i 2

(3-11) A = _ NR;:NN -XNI
UH U eH R-1

-~~ -"F:N,N 2N

From Equations (3-7) through (3-11), it is clear that the "matched

filter" nomenclature is due to the inner product in the numerator
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of Equation (3-11). The denominator is a normalization factor

which gives the CFAR property for Gaussian-distributed

disturbance.

In the AMF, block covariance !NYJ:NN is replaced by its ML

estimate, denoted as RF:N,N Block covariance RF:N,N is referred

to as the sample covariance matrix, and in most typical cases it

is generated as an ensemble average over the secondary data

(recall that the secondary data is assumed to be representative of

the null hypothesis). The data residual covariance under the null

hypothesis is then of the form

(3-10) QAMF _ (F:N,NR F:N,N -F:N,N

Notice that QAMF approaches the identity matrix as the sample

covariance matrix approaches the true covariance.
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4.0 ORTHOGONAL PROJECTION (OP)

In this algorithm the whitening of the data residual sequence

is sought by determining the orthogonal projection of the space

spanned by F:Q' denoted as X+, onto the space spanned by XTP,

denoted as X. Since the data is zero-mean and Gaussian-

distributed, an orthogonal projection in these vector spaces is

equivalent to conditional expectation. Let RF:Q(njX-) denote the

expectation of X F:(n) conditioned on xP(n). For appropriately-

selected integers P and Q, this conditional expectation is of the

form

(4-la) R :(nlIX-)= E[X H:p(E[XP:p2 H:P]Y 1 ?ýP:p(f)

(4-1b) RF:(n1X-) = R• R-1, Xp:p(n)

where Definitions (2-5) and (2-7) have been invoked. Given the

orthogonal projection (4-1), an uncorrelated residual sequence can

be generated based on the architecture in Figure 2-1.

For this algorithm the key parameters are P and Q also.

These parameters can assume a range of integer values, and each

pair of values results in an algorithm with unique performance

characteristics. Thus, it is more appropriate to view this

algorithm as a class, rather than a single algorithm. Class

members are defined by the specific integer values adopted for the

key parameters in the formulation, and those values must satisfy

the following conditions:

(4-2) 1 QP:PN-1

(4-3) P+Q•N
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In this algorithm parameter L is determined directly by J and Q as

(4-4) L = JQ

Since integer G satisfies Equation (2-16) for any valid P and Q

pair, taking into consideration Equations (4-2) and (4-3) together

with Equation (2-16) leads to the following permissible range of

values for G (as a function of P and 0):

(4-5) 1 <G<N- 1

Matrix W is the JQxJQ identity,

(4-6) W = IjO

And the JPxJQ matrix V and the JQxJQ matrix C are given as

(4-7) VH R:Q,P:P p:pP

(4-8) CH= B-1

respectively, where matrix B is obtained via the factorization of

the data residual covariance matrix, Q, as in Equation (2-14).

Expression (4-7) for weight matrix V follows from Equation (4-1)

and Figure 2-1.

For this algorithm the JQ-element data and steering residuals

are

(4-9)p.ppp n = )..., N-Q

(4-10) u(n) = eF:e(n)- - :F:,:PPe R-I 'p NQ
27p p ep(n) n = P,..., N-Q
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respectively. Also, the normalized and uncorrelated (temporally

as well as spatially) JQ-element data and steering residuals are

(4-11) y(n) = CH P(n) n = P, P+1, ... , N-0

(4-12) s(n) = CH u(n) n = P, P+1,..., N-Q

From Equations (2-13b), (4-6), and (4-7), it follows that

(4-13) Q = F:Q,Q = R: P 1 H _VH H

- P:P,P Rj:Q,P:P RF:Q,Q - 9F:Q,P:P

Matrix Q generated according to Equation (4-13) is the model

residual covariance referred to in Remark 2.2.4.

The detection test statistic for this algorithm attains the

form given in Equation (2-17), wherein the block form of the

fully-processed data and steering vector sequences, {y(n)} and fa(n)},

respectively, is used also.

In its most general form (when Q• P << N) the OP method is a

hybrid processing method, since it has both block and sequential

processing aspects. That is, the matrix weight V is generated and

applied to the array output in a block mode, and this is repeated

several times to generate a sequence of residual vectors.

One advantage of this configuration in relation to the MF is

that the dimensionality of the required inverse operation is

reduced from JN for the MF to JP for the OP. This presents a

major reduction in the computational burden, although several

matrix operations are required besides the JPxJP matrix inverse.

Such operations include matrix-matrix products and matrix-vector

products involving JQxJP and JPxJP matrices and JQ-element
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vectors, one matrix addition of JPxJP matrices, and two additions

of JQ-element vectors.

In the context of the radar problem considered herein, an

adaptive OP (AOP) algorithm is defined by using ensemble averages

(ML estimates) over the secondary data in place of unavailable

block covariance matrices. Analogously, the ML estimate of the

residual covariance matrix, 0, is generated as an ensemble average

over the residual sequences of the secondary data set. The ML

estimate is preferred over the model estimate, Equation (4-13),

since it yields better detection performance results in other

contexts (Roman, 1998b).

In the adaptive context, dimensionality reduction induces a

reduction in the number of elements required for the secondary

data set. This is of relevance in practical cases where the

scenario places constraints on the selection of the secondary

data, which is often the case for typical N and J values. In

addition, due to such dimensionality reduction the AOP can exhibit

better detection performance than the AMF using the same secondary

data, or equivalent performance using a smaller set of secondary

data. This is due to the fact that the accuracy of the ML

estimate of a covariance matrix increases as the number of

secondary data used to generate the estimate increases.

As stated earlier, each specific choice of key integers leads

to a distinct algorithm. Two such cases of interest are presented

in Sections 4.1 and 4.2 under known-covariance conditions (for

simplicity). The selected cases represent practical boundaries

for algorithm configuration options: fully-sequential and fully-

block.
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4.1 Parametric Adaptive Matched Filter With Yule-Walker (PAMF-YW)

And Levinson-Durbin (PAMF-LD) Algorithms

The PAMF for Gaussian-distributed processes has been

formulated by Michels et al. (1998) using a sequential whitening

filter based on AR models, and using the Strand-Nuttall (SN) model

identification algorithm to estimate the AR parameters. This

detection approach is referred to as the PAMF-SN. A related

detection approach is to utilize the Yule-Walker (YW) algorithm to

estimate the AR parameters required in an AR-based PAMF. Such a

detection approach is referred to herein as the PAMF-YW. It is

demonstrated herein that the PAMF-YW results from a particular

selection of the key parameters P and 0 in the OP approach. In

addition, it is demonstrated that the multichannel Levinson-Durbin

(LD) algorithm for solving the augmented YW equations leads to the

PAMF-LD detection approach. Thus, both the PAMF-LD and the PAMF-

YW are implemented with the detection architecture in Figure 2-1.

Equations (4-2) and (4-3) present the allowable range of

values for the P and Q parameters in the OP algorithm. For the

present case, select P and Q as

(4-14) a = 1

(4-15) 1 P N-1

As shown below, in the present context P is the order of the AR

system selected to represent the input data. Its specific value

is selected based on performance considerations. Given these

values for P and Q, it follows from Equations (4-4)-(4-6) that

(4-16) L=J

(4-17) G=N-P
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(4-18) W = I

Weight matrices V and C and covariance matrix Q are defined next.

The equivalence between the OP method and the PAMF-YW rests

on an alternative interpretation of the role of weight matrix V.

Weight matrix V is JPxJ in this case, and is obtained using

Equation (4-7) for Q=1; namely,

(4-19) VH • 7:I,P:P .p:p'p

An algebraically-equivalent expression is obtained by applying the

Hermitian transpose to both sides, and then pre-multiplying both

sides by Rp:P,P:

(4-20) Rp!p,pV = V

Now let the unknown matrix V be a partitioned matrix of the formF 1
(4-21) V A2

AP_

where each matrix in the set {AkIk= 1, 2,..., PI is JxJ. Given this

interpretation of weight matrix V, it is straightforward to

recognize that Equation (4-20) is the well-known Yule-Walker

equation of time series analysis. It is easy to recognize also

that the matrices {Ak} are the matrix parameters of a multichannel

AR system of the form
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P EH
(4-22) x(n):- , Ak -x(n -k) +w(n) n = 0, 1,.,N-1

k=1

where {w(n)} denotes the temporally-uncorrelated input (or driving)

sequence with covariance matrix Q. System (4-22) is referred to

as an AR system of order P, and is denoted as AR(P).

Using Equations (4-9), (4-10), and (4-21), the J-element data

and steering residual sequences are determined as

HH

(4-23a) E(n) = xý(n) - _(n In -1) = x(n)- VH X p(n) n = P, P+1,..., N-1

P P

(4-23b) u(n) = x(n)+ A x&(n-k)= Ak x(n-k) n = P, P+1,..., N-1

k=l k=O

(4-24a) u(n) = e(n)- _vHe P:p(n) n = P, P+1,...,N-

P P
(4-24b) uj(n) = 2(n) + AkH e(n -k) A AH e(n -k) n = P, P+1,..., N-1

k=1 k=0

respectively. Notice in Equation (4-23a) that the more common and

simpler notation _(nln-1) has replaced R:Q(nlIX-). Equations (4-23)

and (4-24) are in the form of a multichannel moving average (MA)

system, with inputs {x(n)} and {e(n)}, respectively, and outputs {&(n)}

and {u(n)}, respectively. An equivalent interpretation is that

these expressions constitute the whitening filter associated with

the AR model in Equation (4-22). This is a statement of the fact

that an MA system and an AR system are system inverses of each

other. Next, from Equations (2-6), (2-7), (4-13), (4-19), and (4-

21), the data residual covariance Q is determined as
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P(425 ••J1, H H '• H
(4-25) - V :,:P = Rxx(O) + Ak Rxx(-k)

k=1

Finally, the uncorrelated and normalized J-element data and

steering residual sequences are obtained as in Equations (4-11)

and (4-12), since the JxJ weight matrix C is obtained as in

Equation (4-8), with B a factorization of Q as in Equation (2-14),

and 9 calculated as in Equation (4-25).

Concatenation of Equations (4-20) and (4-25) leads to the

augmented Yule-Walker equation. Specifically,

(4-26) -- - - -- - - -- - -

Equation (4-26) can be solved using the multichannel Levinson-

Durbin (LD) algorithm. Such an approach applied to the detection

context considered herein thus leads to the PAMF-LD detection

algorithm.

In the context of this sub-section, the OP method is fully-

sequential, and the application of the weight matrix V in Figure

2-1 is viewed as a recursive filter, instead of a block filter.

4.2 Matched Maximum-Dimension Orthogonal Projection

Consider the constraints for P and Q in Equations (4-2) and

(4-3), and select for this case

N
(4-27) Q=P=2N

2
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These values result in fully-block configuration, which is the

opposite of the fully-sequential configuration of Section 4.1

above. Then, from Equations (2-16) and (4-4)-(4-6),

(4-28) L= JN
2

(4-29) G = 1

(4-30) W = IJN/2

These parameter values indicate that the data and steering

residuals sequences consist of only one L-element vector.

From Equations (4-7), (4-8), and (4-13) with P=N/2, the JPxJP
weight matrix V, the JPxJP weight matrix C, and the JPxJP
covariance matrix Q are obtained as follows,

(4-31) VH _-:PP:P P:PP

(4-32) = "-:P,P - "RF:p,!P:P = H _VH RH
pPPP "KF:P,P:P F.P,P -

(4-33) OH = B-1

H(4-34) BB =Q

An augmented set of equations can be defined by concatenating

Equations (4-31) and (4-32), as in Section 4.1. But, in contrast

with the case handled in Section 4.1, the case considered in this

section does not appear to have alternative interpretations.

The OP algorithm configuration in this sub-section is a block

processing method. That is, weight matrix V is applied once per
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CPI per range cell (the residual sequence has one vector element).

In this fully-block configuration the past and future vectors have

the same dimensionality, so the conditional expectation in

Equation (4-1) requires the inverse and product of square matrices

of the same dimensions, as indicated in Equation (4-31) . The

residual covariance matrix is generated also involving only

operations on square matrices of the same dimensions, as indicated

in Equation (4-32). This results in the minimum number of

computations for a block processing method (Guerci and Feria,

1996).

35



5.0 MAXIMUM CORRELATION (MC)

The MC algorithm for adaptive arrays has been proposed by

Roman (1998a) in the context of adaptive sidelobe canceling using

complex-valued data, and is based on the concept of canonical

variables and canonical correlations formulated by Hotelling

(1936) for real-valued random variables. That methodology is

extended herein to STAP applications in general, and enhanced to

include a detection test. One of the contributions in (Roman,

1998a) is the non-trivial extension of the canonical variables

concept to handle the case of complex-valued data.

Hotelling's canonical correlations formulation is as follows.

Given two sets of scalar random variables (or equivalently, two

random vectors) find a basis for each set such that in the

transformed basis the first variable in each set is maximally

correlated with the first variable in the other set, and

uncorrelated with all the other variables in the two sets. And

also that the second variable in each transformed set is maximally

correlated with the second variable in the other transformed set,

and uncorrelated with all the other variables in the two

transformed sets. And so on until all the variables in the two

sets have been considered. In addition, each variable in the two

transformed sets is normalized to unit variance. The variables in

the transformed basis are the canonical variables, and the

normalized and optimized correlations are the canonical

correlations. The maximization required repeatedly in the

procedure is straightforward for real-valued random variables, but

the problem formulation requires a modification for complex-valued

random variables because the maximum of a complex-valued variable

is non-unique (Roman, 1998a).

In the STAP application context as formulated herein, block
vectors XTp and XF:Q are the vectors to be transformed into
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canonical variables, and weight matrices W and V in Figure 2-1

are the transformation matrices. The foundation for the MC

algorithm is that the residual sequence {&(n)) is uncorrelated in

time because it is generated as the difference between maximally-

correlated random variables.

As before, integers P and 0 define the number of sub-vectors
in the stack vectors Xp(n) and XQ9,, respectively; that is, xp(n)

is a JP-element vector, and XF:Qf(n) is a JQ-element vector.

Parameters P and Q can be selected to be within a wide range of

values, but are considered herein to satisfy the following

conditions (recall Assumption (2-2) and Constraint (2-3)):

(5-1) 1 • Q0• P• N-1

(5-2) P+Q•N

Recall that Constraint (5-2) is due to the fact that the number of

data points is fixed. Selection of P and Q is based on the

typical trade-off between computational and performance issues

(see Section 5.2 for additional comments). For example, small-

valued P and Q allow for dramatic dimensionality reduction in

relation to the MF, but can entail a noticeable loss in detection

performance in relation to the full-dimension case (P+Q=N).

The MC algorithm includes another variable parameter, the

dimensionality of the data and steering residuals, whose selection

allows for additional dimensionality reduction beyond that

provided by appropriate selection of P and Q. In the generic

architecture of Figure 2-1, weight matrices V and W are

dimensioned JPxL and JQxL, respectively, and the data and steering

residuals, F(n) and u(n), respectively, are L-element column vectors,

where L is selected such that

37



(5-3) 1 <L<JQ

Selection of L is based on dimensionality and performance

considerations. Criteria for the selection of L are based on

information theory concepts and utilize intermediate results from

the algorithm (see Section 5.2).

In summary, there are two mechanisms for dimensionality

reduction in the MC algorithm: first, selection of P and Q such

that Q_< P < N (and P << N can provide satisfactory performance) ; and

second, selection of L such that L<JQ.

Formulation of the method and establishment of the general

solution is accomplished best by assuming full dimensionality for

the residual sequences; that is, with L=JQ. Then, the two JQ-

element vector sequences {_g(n)In=P,P+1,...,N-QO and {(n)jn=P,P+l,..

., N-Q} in Figure 2-1 are defined in terms of two intermediate

sequences, {3Ž(n)I n = P, P+1 ... ,N-Q} and {a(n) In =P, P+1,..., N-Q}, as

follows:

[ 11(n) H x(n)

(5-4a) L((n) n) wH x(n+1) n P, P+1,... , N-Qi _

.JQ(n) WH x(n+e-1)

(5-4b) _ o(n) =wHX xan_.n=P,+I..,N-Q

(5-45) o(n = 32(n) = WHX..)(n) n =P, P+1,... N-Q
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l" x(n-1)

(5-6a) g(n) ------- . H n=P,P+1 ... ,N-Q

Lx(n-P)

•pnJ _HjpQ(5 -6b) ýL(n)= - ~ , = H_-n n =P, P+1, N-0
9H [ (n) H H - x•Pn)=. 

.

( 5- 7) A(n) = !v(n) = V Hx_4p(n) n = P, P+1 ., N-0

where each wi(n), for i =1, 2, ... JQ, is a JQ-element column vector,

each vi(n), for i= 1,2,..., JQ, is a JP-element column vector, and each

hi(n), for i= 1, 2, . .. , J(P-Q), is a JP-element column vector. In the

context of this general case with full-dimensionality (Q< P< N and

L=JQ), W is JQxJQ, V is JPxJQ, and H is JPxJ(P-Q); also, all
three matrices have full rank. The sequence {WH(n) I n = P, P+1, .. , N-Q}

of J(P-Q)-element vectors lacks a role in the STAP architecture

because it is selected by the MC algorithm such that it spans a

subspace orthogonal to _(n).

The residual vector e(n) is a JQ-element column vector, and

the data residual vector sequence is

(5-8a) •(n) = g(n) -.D(n)= 1(n) - ,M(n) n = P, P+1, ... , N-Q

(5-8b) _(n) = WHx T:Q(n) - VHx.p(n) n = P, P+1, ... , N-Q
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As before, G is used to denote the number of elements in the

residual vector sequence. Since P and Q are specified only to lie

within a range, then

(5-9) G=N-P-Q+I

Definitions analogous to those in Equations (5-4) through (5-8)

can be introduced for the steering sequence path in the

architecture of Figure (2-1). However, the MC algorithm weight

matrices V and W are designed based on probabilistic concepts,

and applied analogously in the steering sequence path of Figure 2-

1. Also, notice that in the MC approach both weight matrices V

and W play a role. This is in contrast with the MF, wherein V=

[0], and with the OP, wherein W=I j.

Equations (5-8) suggests that the data residual sequence is

uncorrelated in time if the weight matrices V and W (as well as
matrix H) are selected such that: a) the JQ elements of av(n) are

maximally correlated with the corresponding elements of u(n) and

uncorrelated with the others, b) the J(P-Q) elements of A-H(n) are

uncorrelated with the elements of u(n), c) the elements of u(n) are

pair-wise uncorrelated, and d) the elements of ji(n) are pair-wise

uncorrelated. Such is the objective of the MC approach, as

presented in detail next.

Maximum Correlation Formulation (L=JQ Configuration). Generate

the weight matrices V and W, and matrix H, such that at each

instant of time n, the conditions stated next are true for the

sequences {1(n)l and {J(n)}. First, select W1 and V1 such that u1(n) is

maximally correlated with g1 (n), and both ul(n) and g 1 (n) have unit

variance. Second, select W2 and M2 such that U2 (n) is maximally

correlated with g2 (n), and u2 (n) and 92 (n) are both uncorrelated with

u1(n) and with g 1(n), and both 1 2(n) and p2(n) have unit variance. The

ith condition (for 2•i•JQ) is to select Wi and Vi such that fi(n) is
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maximally correlated with pi(n), and ui(n) and !i1(n) are both

uncorrelated with u1(n), 1)2(n), . , •i. 1 (n), and with pil(n), 92(n),
, .d_1(n), and both fi(n) and pi(n) have unit variance. The (JQ+1)th

condition is to select hi such that IgjQ+I(n) has unit variance and is

uncorrelatbd with u1 (n), I]2(n), . . . , ujQd(n), and with ýi1(n), ji2 (n),

, * .IjQ(n). Lastly, the JPth condition is to select hj(p0o) such

that pijp(n) has unit variance and is uncorrelated with u 1(n), 1)2(n),

. ., Vjof(n), and with gl(n), p2(n), . . . , gjp.U _(n). Carrying out the

required optimization at each step (maximizing the complex-valued

correlation coefficient as in [Roman, 1998a]) leads to the

following compact set of matrix equations,

(5-10) E[in)_2H(n)] = WH E[x (n) xiH:(n)] W = WH R W=I

(5-11) E[pt(f)H(n)] = [ H E[x pp(n)_.H p(n)][V H]= VH] R•Pp [V H] =jp

(5-12a) E[_•n) pH(n)] = WH E[x :Q(n)XHp(fn)][V H]= WH :Q,P:p [V H]

P1  0 -.. 0 0 ... 0

E 0 1P2 ... 0 0 ... 0
(5-12b) En) (n)] = Ro 2(.) = RDA=

0 0 ... pje 0 -.. 0

P1  0 ... 0 :0 ... 0

(5-13) E[iAn)1tH(n)]= WH R :OP:p [V H 0 P2 ... 0 0 0

0 0"0J... 0
-- 0 ... P :

(5-14) P1 >P1>2 ... > PJQ > 0
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where p, is the correlation coefficient between ui(n) and ýi(n), and

Equation (5-13) follows trivially from Equations (5-12). The unit

variance conditions (Equations (5-10) and (5-11)) are introduced

without loss of generality because the correlation coefficient

between two random variables is invariant to a scale factor

applied to either one of the two variables or to both of the

variables.

Variables {oi(n)Ii=1,2,...,JQ} and {ji(n) Ii=1,2,...,JP} constitute

the complete set of canonical variables, and the correlation
coefficients {piji=1,2,...,JQ} are the canonical correlations for

the random vectors XP and X F: (recall that Q•P is assumed).

In summary, Equations (5-10) through (5-14) constitute the

relations that must be solved for the unknown canonical

correlations and weight matrices.

Maximum Correlation Solution (L = JO Configuration). Weight
matrices V and W, matrix H, and the canonical correlations {pi}

that satisfy Equations (5-10) through (5-14) are obtained as

follows. Given the array output data block covariances defined in
Equations (2-5)-(2-7), form the coherence matrix R06 as

(5-15) R08 = E[O(n)6H(n)] R-1/2 ., -1/2

whr 8n =•1/21/
where O(n) =Rý ! Q x(n) and 8(n) =Rpp2pp(n) are dummy variables.

-1/2 T.!P:P,

As inferred in Equation (5-15), R06 is the JQxJP cross-covariance

between the two white random vectors, O(n) and 6(n) (both have

identity covariance matrix). Now apply the SVD to the coherence
matrix R06 to obtain a factorization of the form

(5-16) Re6 = T1 DTH
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where Ti is a JQxJQ unitary matrix, T2 is a JPxJP unitary matrix,

and D is a real-valued JQxJP matrix with zero-valued elements

everywhere except along the main diagonal (recall that P>Q), and

the elements along the main diagonal are arranged in order of

descending magnitude. The real-valued elements along the main

diagonal are the JQ canonical correlations between the past and

future vectors, arranged in descending order. That is,

P, 0 ... 0 :0 .-. 0

(5-17) 0" 0 ',0 0 .. ... 01

0 0 -" .. P 0 ...- 0

(5-18) _P1 - P2 • PJQ > 0

with Di a JQxJQ diagonal real-valued matrix, and D2 a JQxJ(P-Q)

null matrix. In the cases where P =Q, matrix D is square and

diagonal. Also, it follows from Equations (5-12b) and (5-17) that

RI = D.

Matrices T, and T 2 play a role that is obscured in the above

formulation. These matrices transform the intermediate, dummy

variables O(n) and 8(n) into the canonical variables 1(n) and A(n),

respectively. Specifically, iu(n)=TH_0(n) and j_(n)=T2HT(n).

Based on the above development, weight matrices W and V and

matrix H are obtained as

(5-19) W = -1/2

• "F:Q,Q T-

(5-20) 1/2 T

V="p?:p,p . 2 V
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(5-21) H= : -11'2T-":P,P T2H

where T2v and T 2H are JPxJQ and JPxJ(P-Q) partitions, respectively,

of the unitary matrix T2 ; namely,

(5-22) T 2  [!2,1 -2,2 --- !2,JQ I t2,JQ+l " . 2,Jp] =[T 2 v : T 2 H]

The covariance matrix of the data residual is generated using

Equation (2-13) and Equations (5-10) through (5-18).

For the MC method the residual covariance is a simple

function of the non-zero canonical correlations; specifically,

1-P 1  0 ..- 0

o i- p2  "'" 0

(5-23) K2= 2 1j - 2 D1 = 2 (IJ 0-D 1)= 2

o o ".. i-pJQ JQ
0 0 -..- 1-PjQ

where D1 is a JQxJQ diagonal sub-matrix of D defined in Equation

(5-17). The diagonal form of 92 simplifies the final block

filtering step in the detection architecture because weight matrix

C is then diagonal also (Equations (2-14) and (2-15)). That is,

(5-24) CH = B-1 = Q-1/2

where Q-1/2 is the inverse square-root matrix of the data residual

covariance matrix. The normalized and uncorrelated (temporally

and spatially) JQ-element data and steering residuals for the MC

algorithm are

(5-25) v(n) -- CH r(n) n = P, P+1,..., N-Q
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(5-26) s(n) = CH u(n) n = P, P+I,..., N-Q

The form of Q provides insight into the issue of dimensionality

reduction, and suggests a criterion for dimensionality reduction

(Section 5.2).

The detection test statistic for this algorithm attains the

form given in Equation (2-17), wherein the block form of the

fully-processed data and steering vector sequences, {v(n)} and {g(n)},
respectively, is used also.

Maximum Correlation Solution (L<_JQ Configuration). Consider now

the condition where the data residual vector dimensionality is L<

JQ. This condition could be forced by the need to reduce the

computational requirements, or may be driven by the recognition,

utilizing some dimensionality-reducing measure, that the effect of

neglecting the canonical variables beyond L+1 is negligible (see

Section 5.2). Under such conditions only a subset of the

canonical variables is utilized, even though the complete set of

canonical variables and canonical correlations is generated by the

algorithm. Specifically, for L<JQ, only the variables {'ui(n)Ii=1,2,
... , L} and {1 i(n)ji=1,2,...,L} and the correlation coefficients {Pili=I,

2, . . . , L} are retained. This implies the formulas for the

calculation of the weight matrices must be modified.

For the case L<JQ the L-element vector sequences {o(n) In= P,

P+1,... ,N-Q} and {D(n) In=P,P+1,.. .., N-Q) in Figure 2-1 are defined as

[T1(n) 10
(5-27) (n) = X:Q(n)=WHX Q(n) n = P, P+1, ... , N-Q

LL(n)J0L
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[ (n)_ v
-PLn) [vH]

Also, it is convenient to define a partition in each one of the

two matrices TI and T2 of the form

(5-29) T := [1,1 11,2 ... tl,L 11,L+1 1-, J t ] [TA :TB]

(5-30) T2 [t2,, t2,2 . .. ,2,jp] [T 2 A ,T 2B

where TIA and TIB are JQxL and JQxJ(Q-L) partitions, respectively,

of the unitary matrix T 1; also, T 2A and T2B are JPxL and JPxJ(P-L)

partitions, respectively, of the unitary matrix T2. The partitions

in Equation (5-30) are distinct from those in Equation (5-22).

However, notice that T 2A=T 2v and T 2B=T 2H when L=JQ. Given these

definitions, weight matrices W and V are obtained as

(5-31) W= 1/2
"W=•&:QQTIA

(5-32) V= -- 1/2T
-,,p:p,p T2A

As before, the covariance matrix of the data residual is generated

using Equation (2-13) and Equations (5-10) through (5-18), which

results in,

-I-p 1  0 ..- 0

0 i-p 2 0 .. 0

(5-33) 92=21L -2D l = 2 (Il-Dll)=
2

0 o ... 0-
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where D11 is an LxL diagonal sub-matrix of D1 ; namely,

(5-34a) DI = [0] D12 j

(5-34b) Dilt = diag[{l , I P1 21 ... ,I PL}]

(5-34c) D 12 = diag[{PL+1 , PL+2' ... I PJQ

Weight matrix C is calculated using Equation (5-24), with Q as in

Equation (5-33). The detection test statistic is generated also

via Equation (2-17). This completes the formulas for L<JQ.

The calculations in the MC algorithm involve matrices of

dimensions JQ and JP, with Q•ýP. In contrast, the MF algorithm

requires the inverse of a JNxJN Hermitian matrix. This implies a

dramatic reduction in the computational requirements for typical

values of J and N, specially if P << N. In addition, the

calculations in the final block filtering step (weight matrix C)

are reduced further when L<JQ is feasible (Section 5.2).

In the radar array context considered herein, an adaptive MC

(AMC) algorithm is configured by using ensemble averages (ML

estimates) over the secondary data in place of unavailable block

covariance matrices. Analogously, the ML estimate of the residual

covariance matrix, Q, is generated as an ensemble average over the

residual sequences of the secondary data set. Such ML estimate is

preferred over the appropriate model estimate, either Equation (5-

23) or Equation (5-33), since it yields better detection

performance results in other contexts (RomAn, 1998b).

In the adaptive context, dimensionality reduction induces a

reduction in the number of elements required for the secondary
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data set, as for the OP algorithm. This is of relevance in

practical cases where the scenario places constraints on the

selection of the secondary data, which is often the case for

typical N and J values. In addition, due to such dimensionality

reduction the AMC can exhibit better detection performance than

the AMF using the same secondary data, or equivalent performance

using a smaller set of secondary data, as for the OP algorithm.

In its most general form (when QeP<< N) the MC method is a

hybrid processing method, since it has both block and sequential

processing aspects. Specifically, the matrix weights, W and V,

are generated and applied to the array output in a block mode, and

this is repeated several times to generate a sequence of residual

vectors. A parametric, fully-sequential implementation of the MC

method is obtained by generating a multichannel (multi-input,

multi-output) state variable model (SVM) using one of the two sets

of canonical variables as the state variables. The SVM matrix

parameters are generated via operations on the past and future

auto- and cross-covariances. Such an approach has been formulated

and tested extensively by SSC for the case Q=P, and is referred

to as the PAMF using canonical correlations (CC), or PAMF-CC

(Roman and Davis, 1993b; Roman et al., 1997, 1998). The PAMF

admits several variations wherein other linear model types and/or

model identification algorithms are utilized, as evidenced by the

developments in Section 4.1.

As with the OP algorithm, the MC algorithm admits a wide

variety of configurations based on the selection of the parameters

P and Q. One such configuration is the PAMF-CC mentioned above.

Another is the matched, maximum-dimension, fully-block algorithm

obtained when Q=P=N12. At the other end of the spectrum is the

sidelobe canceler, wherein JQ = 1 and JP = N-i (Roman, 1998a)

Further analysis of these variations remains for future work.
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5.1 Information Theory And Canonical Correlations

Information theory plays a key role in the interpretation of

canonical variables, and in the formulation of a dimensionality-

reduction criterion (implemented via determination of parameter

L). The basic information theory concepts referred to herein are

discussed in detail in various texts, including Beckmann (1967)

and Thomas (1969).

The amount of information about a vector random process

provided by a realization of the process is referred to as self-

information. Self-information of a realization of a random vector

x, denoted herein by •(x), is defined as

(5-35) 0(x) =-IO9b[P(X)] = IOb[ IpX) I

where p(X) denotes the probability density function (PDF) of X, and

the logarithm base b is arbitrary. Notice that 3J(X) is a random

variable. The average self-information of a vector random process

is the entropy of the process. It follows that the entropy of a

random vector X, denoted herein by Y-(x), is defined as

(5-36) f~L~ = ...J ) pf x dx f - ...jfogb[p(X)] p(X) dx

The entropy of a random vector x given a realization of another

random vector Z is referred to as the conditional entropy.

Conditional entropy of X conditioned on Z, denoted herein by 9-(4IZ),
is defined as

(5-37) H(xfz) =- J- ... f og1bp(xlz)] p(x,z) dx dz
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where p(xz) and p(XJZ) denote the joint and conditional PDFs,

respectively, of X and Z. Notice that f(XIZ) is a random variable

also. The joint entropy of a random vector X and a random vector

Z, denoted herein by H/(X,Z), is defined as

(5-38) f .(x, z) =- -. 10gb[P(x,z)] P(x,z) dx dz

Joint entropy and conditional entropy satisfy the following key

relations,

(5-39) H(.x,z) = H(x))+ H(zlx) = H(z)+ H(xlz)

The last concept of relevance to the objectives herein is the

average mutual information between two random vectors, X and Z.

Most often this concept is referred to simply as mutual

information, and is a measure of the information in X about Z, or

equivalently, the information in z about X. Mutual information

between the random vectors x and Z, denoted herein by I(X<-.Z), is

defined as

(5-40) I(x <- z) = H(x)- H(x)z) H(=)- H(zlx)

Using Equation (5-39) it is straightforward to show that

(5-41) I(x <->z) = H(x)+H()- H(x,z)

Notice that mutual information is an entropy-type quantity.

In the context of interest herein, the above-defined measures
are determined for the past and future processes, X,1p and XF:O'

respectively, individually and jointly. Recall that the array
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output process {x(n)} has mean zero and is Gaussian-distributed.

The complex Gaussian PDF for a zero-mean, M-element random vector

x is of the form

(5-42) p(x) = -M IRI-M exp[-_xH R-1 X]

where R is the MxM covariance matrix of x,

(5-43) R=EIxxH]

and IRI denotes the determinant of R. This PDF expression is

required to represent each of three cases. First, the PDF of XI.PI

with M=JP and covariance matrix %:p'p; second, the PDF of X T:Q,

with M=JQ and covariance matrix R:QQ; and third, the joint PDF

of X_,.p and XF:Q, with M=J(P+Q) and covariance matrix

(5-44) E[[ P] P [-.p -0 [P:P'P Q P:P, F:'Q1

x TQ (n)J -- :Q,P:P RF:Q,Q

Then, adopting the natural (base e) logarithm option, the entropy

measures for the three processes are obtained as

(5-45) H{(xp:p) = JP + JP In[n] + ln[Ip:p,p 1]

(5-46) !(X:Q) = JQ + JQ Iln[c]+ln[I RT:Q,Q]

(5-47) .H(Xp:p,xNF:.)= JP+ JQ+ JP In[n] + JQ In[n] +ln[ Ip:p,p ]

JO

+ ,n[ I ]+ lIn[1- p]
1=1
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Given these entropy measures, the mutual information between the

past and future of the array output process {x(n)} is determined as

(via Equation (5-41))

JQ

i:I

Mutual information is a measure of the correlation between two

processes (recall that the {pi} are correlation coefficients). If

the past and future processes are uncorrelated, pi=O for i=1,2,...,

JQ, and the mutual information is zero. If the past and future

processes are fully-correlated, pi= 1 for i= 1,2,... ,JO, and the

mutual information is infinite. Equation (5-48) combines all the

information about the correlation of the two processes in a

single, scalar measure. This compact, powerful, and simple

relation is fundamental to dimensionality reduction.

For convenience and notational simplicity, let 11 represent

the mutual information measure, I(Xp:p<--,Q), and also define a set

of variables {Kii1,2... ,JQ} as

(5-49) Ki = -In[1- p?] i:= 1, 2,..., JQ

The {Ki} are referred to herein as the information coefficients for

the process {x(n)1. As demonstrated in the next section, these

parameters provide a means for dimensionality reduction in the

context of the MC algorithm. Similarly, they provide a means for

model order reduction in the parametric, sequential implementation

of the MC algorithm (Roman et al., 1998).
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5.2 Dimensionality Reduction Criteria

The MC algorithm reduces the dimensionality of the problem in

relation to the MF approach in two ways. First, the MC algorithm

operates on matrices with JQxJQ, or JQxJP, or JPxJP elements,

whereas the MF algorithm requires the inverse of a JNxJN matrix.

In most cases this reduction is significant because P and Q are

selected such that 0 • P << N. Second, further reduction is

achieved by retaining only the L most significant canonical

variables, with L<JQ.

These two dimensionality-reducing mechanisms are linked in a

subtle way. Specifically, if P and Q are large-valued, then it is

likely that more canonical correlations are negligible (L is

small) than when P and Q are small-valued. Viewed in a different

way, if many canonical correlations are negligible for the P and 0

values selected, then it is likely that P and Q are too large, and

a smaller-valued pair can be adopted with negligible loss of

information.

Dimensionality reduction via the data residual vector

dimensionality parameter, L, is the focus of this section. Such

reduction is accomplished with the aid of criteria based on the

canonical correlations. Criteria of this type have been discussed

by Roman and Davis (1993a; 1993b) in the context of model order

selection for a state variable parametric model for the ground

clutter in an airborne surveillance phased array radar system.

Two of the criteria discussed by Rom&n and Davis (1993a; 1993b)

are of relevance herein. In addition, two criteria based on the

residual covariance matrix are proposed.

Canonical Correlations Criterion. This criterion consists of

examining all the canonical correlations to determine the integer
i0 for which {pIi = 1, 2,..., i0} are non-negligible, and {pIi = i0+1, i0+2,...
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,JQ} are negligible (the so-called "knee-in-the-curve"). Then, L

is selected equal to i0. If the canonical correlations exhibit a

continuous variation (fail to exhibit "knee-in-the-curve"

behavior), then the value of i0 is selected such that a pre-set

limit to the sum of the canonical correlations is met. Variations

to this approach can be defined wherein the behavior of a function

of the canonical correlations (square; information coefficients;

etc.) is considered instead. Such is the context of the other two

criteria herein.

Residual Covariance Matrix Criteria. Two distinct criteria can be

defined based on the residual covariance matrix, Q. One criterion

is based on the trace of Q, whereas the other is based on its

determinant.

Consider the residual covariance matrix for the full-

dimensionality configuration (L=JQ), and let ý denote the trace

of Q normalized by the scalar term 2JQ; that is,

(5-50) 1rQ =1 J

2JJQ

where tr[.] denotes the trace operator. The first criterion function

is then defined as the normalized total residual variance (as

measured by the trace operator) for the first L-element subset of

the canonical variables; namely,

L

(5-51) -1 Pi 1 L JQ
L = 1 JQP

SJQ P
i=1
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Notice that ý(1) • ... ý ý(JQ-1) < ý(JQ) = 1. Further, if the canonical
correlations are strictly-monotonic and non-zero, lŽ>p2 >''">PJQ

>0, then ý(L) is a monotonically-increasing function (notice that
Pl = 1 is allowed for strict monotonicity).

For the second criterion, consider again the residual

covariance matrix for the full-dimensionality configuration (L=

JO), and let ý represent the determinant of Q normalized by the

scalar term 2 JQ; that is,

(5-52) 2,= 2--detVn]= (1- pi)
i=1

where det[.] denotes the determinant operator. The second criterion

function is then defined as this quantity normalized by the

partial residual variance (as measured by the determinant

operator) obtained with a configuration consisting of the first L-

element subset of the canonical variables; namely,

JQ

(5-53) L =J7[(1-Pi) 1 •L•JQ

1 -(1 _ ) I J(1 _P i)
W= i=1

Notice that 5(1)•.. .•(JQ-1)<ý(JQ)=1 if all pi<l. Function ý(L) is

a monotonically-increasing function if the canonical correlations
are strictly-monotonic, non-unity, and non-zero, I>pl>p2>...>PJQ

> 0. This criterion is inadequate when at least one canonical

correlation is unity. Such cases, however, represent pathological

conditions.

For both criteria, the value of the criterion function at

argument L is indicative of the portion of the total residual
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variance (the variance for the full-dimensional configuration, L=

JQ) that is retained with the first L-element subset of the

canonical variables. Each criterion thus provides a measure of

the degree of information retained in a configuration of

dimensionality L for the residual vector. The larger the value of

L, the higher the degree of information retained in the

configuration. Thus, for each criterion, specification of a

percentage threshold allows selection of the parameter L as the

index associated with the total residual variance (as measured by

either the trace or the determinant) that exceeds the pre-

specified threshold.

Mutual Information Criterion. Based on the development and

definitions of Section 5.1, the mutual information between the

past and future of the process {x(n)} is the sum of the JO

information coefficients (recall Equation (5-49)),

JQ
(5-54) Ti YXKi

A related quantity, the normalized mutual information for the

first L-element subset of the canonical variables, is obtained as

L

1L XKi
(5-55) i(L) -K= Jc

The value of this function represents the fraction of the mutual

information in the past about the future that is retained with the

first L-element subset of the canonical variables. Thus,

specification of a percentage threshold for the mutual information

allows selection of the parameter L as the index associated with
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the normalized mutual information that exceeds the pre-specified

threshold.

Romdn et al. (1997) applied the normalized mutual information

criterion to state space model identification using simulated and

measured airborne phased array radar data. The effects of

variations in scenario parameters such as crab angle, platform

velocity, and clutter-to-noise ratio (CNR) were considered for the

simulated data. The results presented therein indicate that

highly-representative state variable models can be identified

using low-dimensionality covariance matrices.

Remarks. In summary, another important feature of the MC

algorithm is the fact that a simple and powerful criterion is used

to reduce dimensionality or assess information losses. That is,

either determine the number of canonical variables to keep for

achieving a pre-specified level of a probabilistic measure (total

variance; mutual information), or assess the loss of correlation

information suffered by keeping only L canonical variables.

The impact (if any) on detection performance of the AMC due

to large reductions in dimensionality remains to be assessed.

Preliminary work carried out for the related PAMF-CC suggests that

considerable reductions in dimensionality are possible while

surpassing the performance of the AMF (Romdn et al., 1998).
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6.0 ORTHOGONAL PROJECTION WITH CANONICAL VARIABLES (OPCV)

Application of the orthogonal projection principle to the

past and future canonical variables results in an important

extension to the MC formulation. This enhanced formulation is

based on determination of the orthogonal projection of the space

spanned by the "future" canonical variables onto the space spanned

by the "past" canonical variables. Such projection is an optimal

prediction of the future given the past, and the resulting

prediction error vector constitutes the residual vector in the

generic STAP architecture. The orthogonal projection with

canonical variables (OPCV) algorithm is an application of

orthogonal projection in the context of a structure wherein the

array output data (past and future vectors) are represented in the

canonical variables basis. As such, the OPCV for the full-

dimensional residual case (L=JQ) is equivalent analytically to

the OP. However, an important distinction between the OPCV and

the OP is that the OPCV includes an optimal mechanism for

dimensionality reduction (selection of L<JQ), which the OP lacks.

Full-Dimension Residual Configuration (L=JQ). As indicated in

Section 4.0, an orthogonal projection in the vector spaces

considered herein is equivalent to conditional expectation. Also,

recall from Section 5.0 that U(n) and g(n) denote, respectively, the

JO-element future and JP-element past canonical variables for the

array output process. Now let M denote the space spanned by ji(n)

(notice that M = X-), and let i(nIM) denote the expectation of

the future canonical variables conditioned on the past canonical

variables. Then, for appropriately-selected integers P and Q,

(6-la) b(n I M!) = E[2(n) ^n)] (E[g(n) gH(n)]['tt(n)
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E(n)
(6-1b) i(nIM) = R,, t(n) [ D1  D2 ] E(n)=[ D1  [0]1

(6-1c) "6(n M) = D1 pv(n)

where aV(n) and aH(n) are JQ-element and J(P-Q)-element vectors,

respectively, as defined in Equations (5-6), and where Equations

(5-11), (5-12), and (5-17) have been invoked. Consider now the

OPCV algorithm in the context of the generic STAP architecture
(Figure 2-1). In this context, the JQ-element OPCV variables _(n)
and D(n) are defined in terms of the canonical variables as

(6-2) _c(n) = u(n)

(6-3) 0(n) = f(nIM)= D, pv(n)

respectively. The OPCV JO-element data and steering residuals are

generated as

(6-4a) •(n) = g(n) - _(n) un)- i(nIM) n = P,..., N-Q

(6-4b) E(n) = 32(n) - Di _v(n) = WHC XF:Q(n), - VH

V )n- ,MC ,:Pp(f) nl = P,. . ., N-Q

(6-5) u(n) = WHC eYQ(n) - D1VC ep(n) n = P, ... , N-Q

respectively, and where WMC and VMC denote the weight matrices for

the MC algorithm (Equations (5-19) and (5-20), respectively) .
From these expressions it follows that the OPCV algorithm weight

matrices W and V are defined as

(6-6) W=Wmc = R-1/2 T

W F:Q,Q 1
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(6-7) 1/2) V VMcD :PP p2VD1

respectively. Next, the OPCV residual covariance matrix is

obtained from Equations (2-13b), (6-6), and (6-7), as

-1-P 2 0 ... 0
2

2 1-P2 -.. 0
(6 -8) • IjQ- - 1

0 0 ... 1-P Q

Covariance matrix 9 generated according to Equation (6-8) is the

model residual covariance referred to in Remark 2.2.4.

The normalized and uncorrelated (temporally and spatially)

JQ-element data and steering residuals for the OPCV algorithm are

(6-9) v(n) = CH •(n) n = P, P+1,..., N-Q

(6-10) s(n) = CH u(n) n = P, P+1,..., N-Q

The JQxJQ weight matrix C is a diagonal matrix specified as

(6-11) C = B-1 = Q-1/2

where Q-1/2 is the inverse square-root matrix of the data residual

diagonal covariance matrix. The detection test statistic is

generated using Equation (2-17). This completes the formulas for

the L=JQ configuration.

Reduced-Dimension Residual Configuration (L<)JQ). Cases wherein

the data residual vector dimensionality is L<JQ arise due to

processing and/or performance requirements, as stated in Section
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5.0. In the OPCV algorithm formulation for such cases an

orthogonal projection is desired from a subset of the future

canonical variables onto the past canonical variables.

Specifically, for L<JQ, only the variables {1i(n)Ii=1,2,... ,L} and

{gi(n)Ii=1,2,...,L}, and the correlation coefficients {pil i=1,2,...,L}

are retained. Thus, the formulas for the calculation of the

weight matrices must be modified. Determination of the value of L

is considered in Section 6.2.

For the case L < JO it is convenient to define an LxJQ

selector matrix SL as

(6-12) SL = [ 1L [OILJQL]

Then, the sub-vector of u(n) formed from the first L future

canonical variables is denoted as

(6-13) OL(n) = SL3(n) = 1< L <JQ

-'OL(n)_

Now let uJL(fJM) denote the expectation of the first L future

canonical variables conditioned on the past canonical variables.

Then, for appropriately-selected integers P and Q,

(6-14a) 2L(n I M ) = EluL(n)_.LH(n)] (E[_,(n) gH(n)])-_1 (n) = SL Rug _(n)

(6-14b) i5(nI9W [ L r 1 [ D1 1  [ 0 ]L,JQ-L [0 ]L,J(P-Q) 1g(n)() [ L []L,jQL ] [0 ]JQ-L,L D12  [0 ]JQ-L,J(P-Q) _

(6-14c) ý_L(nIM ) = D111 L(n)
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where Equations (5-11) , (5-12) (5-17) , (5-34), and (6-12) have

been invoked, and where L(n) is a vector of the first L past

canonical correlations,

[tj(n)1
(6-15) [ l 1• L < JQ

LgL(n)]

Given these relations, the L-element OPCV variables oL(n) and A(n)
are defined as

(6-16) ) = L(n)

(6-17) A(n) = fŽL(nlIM ) = D 11L(n)

respectively, and the OPCV L-element data and steering residuals

are generated as

(6-18a) _n= g(=_[(n) n)= - L(nM n=P,..., N-Q

Hn H
(6-18b) F_(n) =_32L~n A L~n = MCL -Xq7Q(n) - D,11VMcL X.p:p(n) n = P,..., N-Q

(6-19) u(n) =WMCL eFQ(n) - D11 VcL ep,:p(n) n = P,..., N-Q

respectively. In these expressions, WMCL and VMCL denote the JQxL

and JPxL, respectively, weight matrices for the reduced-

dimensionality MC algorithm (Equations (5-31) and (5-32),

respectively). It follows that the reduced-dimensionality OPCV

algorithm weight matrices W and V are defined as

(6-20)1/2
WMCL 1A:QQ-A
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(6-21) -112) V 1 VMcLD11 R:p,p- 2A 11

respectively. These weight matrices are substituted in Equation

(2-13) to obtain the LxL OPCV residual covariance matrix as

-IPi 0 -- 0
0- 1-p0 -.. 0

(6-22) Q = IL -D 2 0 1P 2  0

0 0 . 1-PL2

Weight matrix C is calculated using Equation (6-11), with Q as in

Equation (6-22). The detection test statistic is generated also

via Equation (2-17). This completes the formulas for L<JQ.

The OPCV algorithm admits an adaptive formulation also, which

is referred to as the adaptive OPCV (AOPCV). In the AOPCV each

unavailable block covariance matrix is replaced by its ML

estimate, obtained as an ensemble average over the secondary data.

As is the case for the other two algorithms, the ML estimate of

the residual covariance matrix (obtained as an ensemble average

over the residuals for the secondary data set) is preferred over

the model residual covariance estimate (generated via either

Equation (6-8) or Equation (6-22) using the estimated canonical

correlations).

Since the OPCV algorithm is based on the canonical variables

basis, the comments made for the MC algorithm in Section 5.0

regarding issues such as adaptability, dimensionality reduction,

implementation aspects, computational issues, and algorithm

structure issues are valid also for the OPCV. However, issues

unique to the OPCV are discussed in the sections that follow.
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6.1 Optimality Of The OPCV

Yohai and Garcia Ben (1980) have demonstrated that the

canonical variables constitute the optimal solution to a reduced-

dimensionality linear prediction problem. In the context of the

notation and formulation adopted herein, the problem addressed in

(Yohai and Garcia Ben, 1980) is stated as follows. Given the JQ-
element future vector Xj:o(n) and the JP-element past vector Xp(n),

then, for L< JQ, determine a JPxL linear transformation T on the

past process of the form

(6-23) z(n) = THxmp(n)

such that an orthogonal projection of the space spanned by XF:Q(n)

onto the space spanned by z(n), denoted as Z, minimizes the

criterion

(6-24) J(T) = det[ E[ [XyF:0 (fY- rF:Q(fIZ )][XgF:Q(l)- RFQ lZ]

where i :Q (nlZ) is the orthogonal projection,

(6-25) R :Q(n IZ) = E[XkF(n) zH(n)] (E[z(n) zH(n)])- z(n)

Notice that z(n) as defined in Equation (6-23) is an L-element

vector, which implies that ZcX-. This completes the statement

of the problem formulated by Yohai and Garcia Ben (1980).

The optimization problem stated above admits as one solution

that matrix T be selected as the JPxL weight matrix VMCL, the past

canonical variable transformation for the case L< JQ (see Equation

(5-32)), and the transformed variables are the first L past
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canonical variables. Specifically, one optimal solution, denoted

by superscript "o", is

(6-26) T°=V R-1/2MCL - p:p,p T2 A

(6-27) z°(n) = V~cL HX(n) = TA R-1:P,P-/2x(n)

Other equivalent optimal solutions are generated by selecting the
transformation matrix to be of the form T=VMcLF, where F is a

full-rank LxL matrix. More specifically, matrix F is any general
full-rank matrix if PL>PL+1, and is a linear function of the

singular vectors for repeated canonical correlations if Pq+1=''PL

for some q such that 1 <q<L. The minimum value of the criterion

J(T) (Equation 6-24)), denoted by J°(T), is

L

(6-28) J°(T) = det[R&:,Q] QQ (1-p)
i=1

This completes the solution presented by Yohai and Garcia Ben

(1980), with minor modifications to fit the context herein.

In summary, two important points are established by the

Yohai-Garcia Ben result. First, the past canonical variables

constitute an optimal basis, with respect to Criterion (6-24), to

represent an L-dimensional proper sub-space of X-. Second, the

solution provided by the past canonical variables has the simplest

form, since all other solutions involve an additional matrix

factor, F.

The Yohai-Garcia Ben result is significant in the context of

the reduced-dimensionality OPCV because it states that the

selection of the variables u(n) and D(n) as in Equations (6-16) and

(6-17), respectively, is optimal according to Criterion (6-24).
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Specifically, with xy:f(n) expressed as UL(n), and x,,(n) expressed as

L (n), the Yohai-Garcia Ben result states that z(n)= L(n), and

Criterion (6-24) becomes J(T)=det[Q] since K2=E[E(n))H(n)] when the

data residual c(n) is generated via Equation (6-18). With Q given

as in Equation (6-22), the optimal criterion value is then

L

(6-29) J°(T) P 1(1-pi) FOR OPCV ALGORITHM

i=1

Equation (6-29) results from Equation (6-28) when X :Q((n) is

expressed as u L(n) (that is, in canonical variables basis) because

the covariance matrix of 1UL(n) is IL-

The optimal criterion value in Equation (6-29) can serve as a

criterion for reducing the dimensionality of the data residual

vector in the OPCV algorithm (selecting L), which is one of the

two ways in which dimensionality reductions can be attained with

the MC and OPCV algorithms (see Section 5.2). It turns out that

one of the two residual covariance matrix criteria types proposed

in Section 5.2 leads to an identical expression. This issue is

explored next, in Section 6.2.

6.2 Dimensionality Reduction Criteria

Since the OPCV algorithm is based on the MC algorithm, the

issues and criteria for dimensionality reduction discussed in

Section 5.2 are applicable also to the OPCV. The exception

involves the criteria based on the residual covariance matrix, K2,

because each algorithm has a different residual covariance matrix.

Thus, only the residual covariance matrix criteria are discussed

herein. As in Section 5.2, two distinct criteria are defined

based on 9: one based on its trace, the other based on its

determinant. Both criteria have the same analytical form as their
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MC counterparts. A key distinction, however, is that the MC

criteria are functions of pi, whereas the OPCV criteria are

functions of pi.

Residual Covariance Matrix Trace Criterion. Consider the residual

covariance matrix for the full-dimensionality configuration (L =

Ja), and let C denote the trace of Q normalized by the scalar term

JO; that is,

JQ

(6-30) -j=-tr[Q]=1---- P

The first criterion function is defined as the normalized total

residual variance (as measured by the trace operator) for the

first L-element subset of the canonical variables; namely,

L

--- p = ~i=11<LJ

(6-31) 1• LL)-O11 _

i=1

Notice that ý(1)!. ... ý •(JQ-1) < ý(JQ) = 1. Further, if the canonical

correlations are strictly-monotonic and non-zero, 1 >P1>P2>...>pjQ

>0, then ý(L) is a monotonically-increasing function (notice that
P1 =1 is allowed for strict monotonicity).

Residual Covariance Matrix Determinant Criterion. As before,

consider the residual covariance matrix for the full-

dimensionality configuration (L=JQ), and let ý represent the

determinant of Q,
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Jo

i=1

The second criterion function is defined as this quantity

normalized by the partial residual variance (as measured by the

determinant operator) obtained with a configuration consisting of

the first L-element subset of the canonical variables; namely,

JQ

fJ i- ) JQ

(6-33) L L = 171(1-p2) 1 • L•JQ

Notice that W()•... W(JQ-1)< (JQ)=1 if all pi < 1. Function 4(L) is

a monotonically-increasing function if the canonical correlations
are strictly-monotonic, non-unity, and non-zero, 1>P 1 >P2 >... >PJQ

>0. As for its MC counterpart, this criterion is inadequate when

at least one canonical correlation is unity; however, the

occurrence of canonical correlations of exactly unity value is an

unlikely event due to uncorrelated noise and computational errors.

Notice that the un-normalized criterion 4 of Equation (6-32) with

JQ replaced by L is identical to the minimum value of the Yohai-

Garcia Ben criterion for the case when the array output data is in

canonical variables basis, Equation (6-29).

Remarks. For both criteria, the value of the criterion function

at argument L is indicative of the portion of the total residual

variance (the variance for the full-dimensional configuration, L=

JQ) that is retained with the first L-element subset of the

canonical variables. Each criterion thus provides a measure of

the degree of information retained in a configuration of

dimensionality L for the residual vector. The larger the value of
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L, the higher the degree of information retained in the

configuration. Thus, for each criterion, specification of a

percentage threshold allows selection of the parameter L as the

index associated with the total residual variance (as measured by

either the trace or the determinant) that exceeds the pre-

specified threshold.

6.3 Residual Covariance Matrix Comparison: MC And OPCV

The OPCV residual is less than or equal to the MC residual

for all configurations (L 5 JQ). This is expected since the

orthogonal projection is the best linear predictor of a JQ-element
vector XF:0 f(n) based on a JP-element vector Xp(n) for a variety of

criteria, including minimization of each of the following two

functions of the prediction error, P(n),

(6-34a) J2(T) =E[i s(n) 112 = E[I X:O(nl)- *:Q(nlIX) 12] = E[1 X•F 0(fl) -T" x,_(n) 121

(6-34b) J12 T) =tr[E[s-(n)gH(n)] = tr[ E[ kF:Qý(n) -TH X PPf)tyQf)HX xPf)]H1]J

(6-35a) JD(T) = det[E[g(n)gH(n)]]

(6- 35b) JD(T) = det[ E[ tXF:Q(fl) - F:o(nlIX -)][ F:0 ,(l) - RF:Q(,flX -)]H]]

(6- 35c) JD(T) = det[ E[ [ XF:,(f) - TH XP: P(fl)] IXF:Q)(f) - TH x13: p(l)] ]H
where T denotes a JPxJQ linear transformation, and 11-112 denotes

the vector Euclidean norm (or 2-norm). The orthogonal projection

solution is
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(6-36)H T-I S:,n
(6-3) T E[X: 0(l)X :P(nf)] (E[2ST:P(fl) 2ý:P(fl)])

Minimality of the OPCV algorithm in relation to the MC algorithm

is demonstrated for each of these two criteria.

Consider first the Euclidean norm (covariance matrix trace)

criterion, J2(T), for the general case L•! JQ. For this criterion it

is necessary to demonstrate that tr[nMC]ýtr[UoPCV]. This inequality

is true if the following condition is satisfied,

L L
(6-37) 2L-21pi Ž L- p2 1 •L•JQ

i=~1 i=1

Straightforward manipulation of Inequality (6-37) leads to the

expression

L

(6-38) 2(p -2pi+l) > 0 1• L JO
i=1

Inequality (6-38) is satisfied if p2 -2pi+1 Ž0 is satisfied for

each value of i=1,2,. .. ,L. The left-hand-side of this expression
is a quadratic polynomial with double root at pi=l, with value 1

at pi=O, and positive-valued over the domain of definition for the
canonical correlations: 0 Pj<l for i= 1,2,. L. Thus, condition

tr[aMCI Ž tr[nopcv] is indeed true.

Consider next the covariance matrix determinant criterion,

JD(T), for the general case L•! JQ. For this criterion it is
necessary to demonstrate that det[OMc]Jdet[noPCV]. This inequality

is true if the following condition is satisfied,
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L L

(6-39) 71 2 (1 -pi) ŽJ(1_-P2) 1 < L•ýJQ
i=1 i=1

Straightforward manipulation of Inequality (6-39) leads to this

equivalent expression

(6-40)- L P 1 < 1 1<L < J117 2 1 LJ

Inequality (6-40) is satisfied if p!1l is satisfied for each value

of i= 1,2,...,L, which is satisfied indeed over the domain of

definition for the canonical correlations. Thus, condition

det[VMOC]det[nOPCV] is true.

In summary, the OPCV algorithm residual is less than or equal

to the MC algorithm residual for all configurations (L•JQ), and

according to both optimization criteria.

An important point to notice is that the MC algorithm could

out-perform the OPCV algorithm due to software implementation and

computational accuracy issues, even though it is less optimal in

theory. For example, if the numerical stability of the estimates

of the canonical correlations is poor, then the OPCV weight matrix

V computed via Equation (6-7) is less accurate than the MC weight

matrix V computed via Equation (5-20). This issue should be

pursued further via simulation-based analyses.

6.4 Past-Only OPCV Configuration

The Yohai-Garcia Ben result discussed in Section 6.1 suggests

a variation of the OPCV algorithm in which only the past block

vector is transformed onto the canonical variables basis. In such

a configuration, referred to herein as the Past-Only OPCV
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configuration, only the past canonical transformation matrix, VMC,
is generated and applied to the past block vector, _x,.p(n). Thus,

the weight matrices W and V in Figure 2-1 for the Past-Only OPCV

configuration of reduced dimensionality for the residual vector (L

<JO) are

(6-41) W: IJO

(6-42) V= H H =R-1/2 H -1/2 H

VMcLVMcL j:Q,pp = PPT 2 A T2 A 2AKp:pp :Q,P:P

respectively. In these expressions, the JPxL weight matrix VMCL is

as determined via Equation (5-32). Comparing these weight

matrices with the corresponding ones for the OPCV configuration

(Equations (6-20) and (6-21)), notice that weight matrix V has a

simpler form in the OPCV configuration, whereas the reverse is

true for weight matrix W.

Consider now the covariance matrix of the data residual.

Using Equation (2-13), Q is obtained as

(6-43) R 9KR:Q,Q - :Q,p:p 1/2 H 1/2 H"p:P,P T 2AA T -,p:Pp -j:Q,P:P

Straightforward algebraic manipulations result in the following

equivalent expression for L2,

1/ 2 1D
""F:64 4 [0] 11 101 H 1/2

(6-4)1 IL0i 1 T1- I &:

Equation (6-44) leads to a simple form for the determinant of Qi;

namely,
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L

(6-45) det[O] = det[RfkQ 0 ] n7(i-P 2)
i=I

This expression is identical to the optimal value for the

criterion of the Yohai-Garcia Ben result discussed in Section 6.1,

which is expected since the criterion expression (Equation (6-24))

becomes J(T)=det[KI] for the Past-Only OPCV configuration.

Weight matrix C and the detection statistic are generated via

formulas analogous to those stated in Section 6.0 for the reduced-

dimension residual configuration.

The Past-Only OPCV may have advantages over the OPCV in terms

of numerical accuracy and/or computational load because only one

block vector is transformed. Generation of the model residual

covariance for the Past-Only OPCV requires more computations than

for the OPCV; however, generation of the residual covariance is an

irrelevant issue in the context of the generic architecture

because the approach preferred for either algorithm is to use the

sample residual covariance (which involves the same procedure for

either algorithm). Further comparisons between OPCV and the Past-

Only OPCV remains as a task for future work.

6.5 OP And OPCV (L= JO Configuration) Equivalence

Consider the OPCV algorithm for the full-dimension residual

configuration; that is, with L=JQ. For this case the OPCV is

equivalent to the OP with the array output data represented in the

canonical variables basis, as shown next.

In the context of the generic STAP architecture in Figure 2-

1, assume the array output data is represented in the canonical
variables basis. That is, the JQ-element block vector XF:Q(n) is
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replaced by the JO-element vector W(n), and the JP-element block
vector Xp(n) is replaced by the JP-element vector p_(n). Under

these conditions, the OP weight matrix Wop is the JQxJQ identity,

as before (Equation (4-6)),

(6-46) Wop0 : IJQ

and the JPxJQ OP weight matrix Vop is (via Equation (4-7)),

(6-47) V~p H R =:[D1 l[0]]

where DI is as defined previously. The JQxJQ OP data residual

covariance matrix is obtained as (via Equation (4-13)),

-I-P2 0 ... 0

2(6-48) KoP =I -D2 0  1-D2 .. 0

0 0 ...- - 2

which is identical to the OPCV data residual covariance matrix,

Equation (6-8). Thus, the OP with the array output data

represented in the canonical variables basis is equivalent to the

OPCV for the full-dimension residual configuration, L=JO.

The advantages of the OPCV over the OP include that the OPCV

structure allows for dimensionality reduction in the residual

vector, and that one approach to dimensionality reduction with the

OPCV is based on the optimal solution to a well-posed minimization

problem, as shown in Sections 6.1 and 6.2. In addition, the OPCV

provides unique insight into the structure of orthogonal

projections in the context of STAP applications.
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7.0 TWO-DIMENSIONAL ARLS AND PAMF DETECTION FOR STAP

The auto-regressive (AR) subclass of 2-D, linear, shift-

invariant parametric time series models was selected to represent

the channel output under the null hypothesis, with its attendant

increase in modeling degrees-of-freedom (independent dynamic and

static modeling capability along each axis) over the 1-D vector

representation. The complete time series model class (MA, AR, and

ARMA models) was considered, but the AR subclass and the 2DARLS

model identification algorithm in particular provided major

computational, software implementation, and modeling performance

advantages. Since each member of the AR model subclass is

invertible, the 2-D AR least-squares (2DARLS) algorithm inherently

generates the whitening filter used in the 2-D PAMF detection

architecture presented herein.

7.1 Two-Dimensional ARLS Model Identification

The channel output vector sequence {x(n)} can be viewed as a

scalar 2-D sequence (Dudgeon and Mersereau, 1984). Let channel J

be the temporal and spatial reference for the array, and define

the following association,

(7-1) Xj-k(n) = x(n,k) On•N-1; Ok•J-1

The process {x(n,k)} has a scalar 2-D power spectrum denoted as

{Sxx(fd,fs)}, and a scalar 2-D auto-covariance sequence (ACS) denoted

as {rxx(m,t)}, where (m,ý) is the lag pair corresponding to the

normalized frequency pair (fd'fs).

The association defined by Equation (7-1) was adopted for

Phase I and its usage is continued in Phase II because it is

consistent with the relation between multichannel 1-D and scalar

2-D systems demonstrated by Therrien (1981). Alternatives to
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Equation (7-1) can be defined, such as {xk+l(n)=x(n,k)In =0, 1,..., N-1; k
=0, 1,...,J-1}. This specific alternative definition corresponds to

the MATLAB software default array definition convention.

Model-based detection as considered herein is predicated on

the representation of the channel output process {x(n,k)} as the

output of a 2-D time series model driven by white noise.

Furthermore, the time series model output is corrupted by additive

white noise. To be precise, such a representation is approximate

in the case of radar data. Nevertheless, in practice time series

models have been shown to provide a good fit to radar data. Thus,

the 2-D process {x(n,k)} is assumed to be represented as

(7-2) x(n,k) = y(n,k) + w(n,k)

where y(n,k) is the output of a linear, shift-invariant, 2-D AR time

series model, and w(n,k) is a 2-D, zero-mean, Gaussian-distributed,

white noise process. Processes {y(n,k)} and {w(n,k)} are independent.

Consider now the 2-D AR representation for the process {y(n,k)}.

A 2-D AR(Pd,Ps) process {y(n,k)} is defined as

Pd Ps
(7-3) y(n,k)=- I Za*(id,is)y(n-id,k--is) + u(n,k)

id= 1 is=1
(id~is)(OO)

where the input {u(n,k)} is a 2-D, zero-mean, Gaussian-distributed,2
white noise process with variance au , {a(id,is)id=0, Pd;is= 0 , 1,...,I

Ps; (id,is)•(O,O)) are complex-valued, constant coefficients referred to

as the AR parameters, and Pd, Ps are the model order parameters

along the time (Doppler) and space dimensions, respectively. The

transfer function associated with model (7-3) is obtained as the
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2-D Z-transform of Equation (7-3) . Specifically, the transfer

function is a 2-D, complex-valued, rational function of the form

(7-4) T(Zd,Zs) A b° - d b°
A(Zd'Zs) X Xa*(PdPs)dPd Z sPS

Pd =
0 PS =0

(7-5) a(0,0) = 1

with complex-valued variables Zd and zs, where A(zdzs) is the AR

scalar 2-D polynomial, and bo is a real-valued scalar coefficient.

As indicated in Equation (7-5), the leading coefficient of A(zd,ZS)

is unity. This follows from Equation (7-3), and is the 2-D

version of a monic polynomial in 1-D. The 2-D frequency response

of model (7-3), denoted herein as T(fd,fs), is obtained by

restricting the complex variables Zd and Z. to the unit surface in

the complex 2-D plane,

(7-6) Zd = ej2d

(7-7) Zs = ej2nfs

with fd and fs the normalized temporal (Doppler) and spatial

frequencies, respectively.

In the context of 2-D PAMF processing for surveillance phased

array radar systems, the total interference (jamming and ground

clutter) is represented by a process {y(n,k)} of the form (7-3), and

the receiver noise is represented by a white noise process {w(n,k)}

as defined above. Thus, it is required to identify model order

and coefficient parameters, (Pd,Ps) and {a(id,is)1, respectively, given

the secondary data. Having identified the model parameters which

represent the channel output process, the associated 2-D whitening

(inverse) filter is available directly. Specifically, given the
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channel output 2-D sequence, {x(n,k)}, the whitening filter residual

sequence, {s(n,k)}, is obtained as

Pd Ps

(7-8) E(n,k)= I _a*(id,is)x(n-id,k-is)
id= 0 is=O

with a(0,0) = 1. Notice that the whitening filter is a 2-D MA

system, with {a(id,is)} as the MA coefficients (an MA system is the

system inverse of an AR system, and vice-versa).

A 2-D model of the form in Equation (7-3) is referred to as a

first-quadrant system since only values in the first quadrant of

the output 2-D plane (except for initial conditions) are used to

generate the system output. Model (7-3) is causal, in loose

analogy with the 1-D case, since only past outputs and present

inputs are used to generate the present output. Similarly, its

system inverse in Equation (7-8) is causal also. In the phased

array radar space-time problem causality along the time axis is an

inherent feature of the channel output. In contrast, the issue of

causality along the spatial axis appears ambiguous because all

channels generate an output at each temporal sampling instant.

The ambiguity is removed by considering the phase reference point

to be at array element k = 0. Model (7-3) is also recursively

computable (Dudgeon and Mersereau, 1984), which simplifies

hardware implementation. Other region of support options, such as

the non-symmetric half plane (NSHP), are of interest and should be

considered in future efforts.

Model (7-3) is causal and causally-invertible. Thus, if the

noise {w(n,k)} in Equation (7-2) is zero and model (7-3) represents

the channel output exactly, then {x(n,k)}={y(n,k)} (see Equation (7-2))

and the residual {£(n,k)} of {x(n,k)} is a true innovations sequence.

For any other conditions, the filter residual {s(nk)} approximates

an innovations.
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Two-dimensional time series models have several features

distinct from their 1-D counterparts. The three distinctions most

relevant to the problem considered herein are summarized next.

The first key distinction is that most 2-D polynomials are not

factorable. Thus, a polynomial A(Zd,Zs) identified by an algorithm

is likely to be unfactorizable. This complicates key issues such

as stability determination. In 2-D systems, poles and zeros can

occur as functions rather than as an isolated point (Dudgeon and

Mersereau, 1984), and a 2-D system is stable if the loci of the

pole is inside the unit circle. It is important to note that all

cases modeled in Phase II using the 2DARLS algorithm resulted in a

stable 2-D model, which is also true for the 1-D multichannel

cases considered. The second major distinction is that 2-D models

offer more dynamic as well as static modeling degrees-of-freedom.

Recall that a 1-D vector system has isolated (single-point) poles

and zeros only for the temporal dimension (a 1-D multichannel AR

system does have system zeros), whereas the 2-D AR system in

Equation (7-3) has poles for both time and space, and those poles

are generalized into loci rather than isolated points (as stated

above). The space dimension in a 1-D vector AR system is non-

dynamic (has no poles) and with fixed value J (in the context

considered herein), whereas in a 2-D scalar AR system the space

dimension is dynamic and with model order P8 that can be different

from J. When Ps<J, the dimensionality of the LS equations to be

solved is smaller for 2-D scalar AR systems than for 1-D vector AR

systems; however, the increased dimensionality of the LS equations

in a 1-D multichannel AR system (when Ps<J) does not result in an

increase in dynamic degrees-of-freedom (number of poles). The

third distinction of relevance is that causality and region-of-

support issues offer various alternatives for 2-D systems, in

contrast with a single option for 1-D systems. Region-of-support

options must be considered keeping in mind that causality is to be

preserved if the innovations property is desired.
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Estimation of the parameters for a 2-D scalar time series

models has been addressed by several authors (see [Marple, 1987],

[Dudgeon and Mersereau, 1984], [Therrien, 1986] and the references

therein). For AR models most algorithms require generation of the

ACS of the process, and the algorithms are extensions of the 1-D

case. In contrast with the 1-D case, for 2-D systems the maximum

entropy method (MEM) is not equivalent to the AR method. Further,

the MEM parameters are obtained via optimization procedures, with

their attendant convergence and other such difficulties. Most 2-D

model identification algorithms are formulated in a stochastic

framework and require the ACS (in practice, only an estimate of

the ACS is available) . One exception is the 2DARLS method

selected in Phase II and summarized next. The 2DARLS is based on

minimizing the mean-squared error in fitting a model to data. As

such, it can be viewed as a statistical approach. Both approaches

(stochastic/probabilistic and statistical) lead to identical

results in the case of Gaussian-distributed data. Thus, the

statistical framework is more general because it can be applied in

cases where the data satisfies a distribution other than Gaussian.

In the presentation below the 2DARLS identification algorithm

is formulated for the ideal case wherein the noise process w(n,k) is

zero. In other words, Equation (7-2) is assumed to reduce to x(n,k)
= y(n,k), so the formulation can be defined in terms of the channel

output process, x(n,k). However, Equation (7-2) is a better

representation of conditions in practical scenarios. Fortunately,

the 2DARLS algorithm is robust to the presence of additive white

noise.

Consider the problem of fitting an AR(Pd,Ps) model to the

zero-mean, stationary (at least in the wide sense), 2-D finite-

duration sequence {x(n,k) I n = 0, 1, ... , N-1; k = 0, 1, ... , J-11. That is, it is

desired to obtain a set of constant, complex-valued, scalar
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coefficients {a(id,is) Id = ,1,..., Pd; is = 0, 1..., Ps; ('d,'s) # (0,0)}, and a

scalar variance cy2 such that the random process {x(n,k)) (of which

the given sequence is a particular finite-duration realization)

satisfies the following relation,

Pd Ps
(7-9) x(n,k)=- I _a*(id,is)X(n-id,k-is) + u(n,k)

id=l is= 1

(idis)#(OO)

where {u(n,k)} is the zero-mean, complex-valued, input white sequence

with variance Y2 = E[u(n,k)u*(n,k)]. In the 2DARLS algorithm the

unknown parameters, a2 and {a(id,is) Iid = 0, 1, ... Pd; is = 0 , 1, . . . ,Ps; (id,is)

(0,0)1, are estimated via minimization of the square of the error in

fitting model (7-9) for a fixed model order pair (Pd,Ps) to a given

set of secondary data.

The 2DARLS method formulation is as follows. Consider first

the case where the secondary data consists of only one element;

that is, K=1. Let s(n,k) denote the forward linear prediction error

variable of the AR(Pd,Ps) model,

Pd Ps
(7-10) s(n,k)=x(n,k)+ _ ,a*(id,is)X(n-id,k-is) Pd: n < N-1; Ps:k<J-1

id= 1 is=1

(id,is)#(O,O)

The function to be minimized is the following real-valued scalar

function of the forward linear prediction error variable,

N-i J-1 N-i J-1
(7-11) .W =): I F__.*(n,k)F,(n,k)= I I_.,(n,k)F_'(n,k)

n=Pd k=Ps n=Pd k=Ps

where a is the following ((Pd+1)(Ps+1)-1)-element column vector,
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(7-12) a= [a(Pd,Ps) a(Pd,Ps-1) ... a(Pd,O) ... a(O,Ps) a(O,Ps-1) ... a(. ,1)]T

In standard optimization theory, function J(a) is referred to as the

Jacobian. The forward linear prediction squared error, denoted as

If, is defined as total squared error in the linear fit, and for

the special case of scalar sequences it is obtained as

N-1 J-1 N-1 J-1

(7-13) if= Y E,*(n'k) :(n'k) Y I F(n'k) *(n'k)

n=Pd k=Ps n:Pd k=Ps

It follows from Equations (7-11) and (7-13) that If=J(a). If the

AR(Pd,Ps) model is an appropriate fit to the data, the prediction

squared error is an estimate of the variance of the input noise.

Equivalently, the prediction squared error is also an estimate of

the variance of the prediction error; specifically,

(7-14) &2 ^2 = 1C U (N-Pd)(J-Ps)

In order to solve the minimization problem postulated above, it is

convenient to define the following ((Pd+l)(Ps+l))-element column

vector,

(7-15) x(n-Pd:n,k-Ps:k) = [x(n-Pd,k-Ps) ... x(n-Pd,k) ... x(n,k-Ps) ... x(n,k)]T

Given these Definitions (7-12) and (7-15), the forward linear

prediction error in Equation (7-10) can be expressed as,

(7-16) £(n,k) = [aH 1]x(n:n-Pd,k:k-Ps)

and the function to be minimized, J(A), is expressed as
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(7-17) Ja)= [aH 1 Y Yxý(n:n -Pdk:k •P. n [a]
n=Pd k=Ps

Now let a ((Pd+1)(Ps+1))x((Pd+1)(Ps+1)) matrix R represent the double

summation of outer-products (dyads) in Equation (7-17); that is,

N-1 J-1

(7-18) R= I,.x(n:n-Pd,k:k-Ps)xH(n:n-Pd,k:k-Ps)
n=Pd k=Ps

Notice that matrix R is Hermitian. Now further define the

following partitions in R,

[Rll1 [12 1
(7-19) R = R1H1 r22 J

*12 22

where 11 is ((Pd+l)(Ps+l)-l)x((Pd+l)(Ps+l)-l), f 12 is ((Pd+1)(Ps+1)-1)xl,

and r2 2 is a scalar. Now the function to be minimized is

represented simply as

(7-20) J(a)=aHRlla+rH a+a Hr12 +r 22

which is a real-valued scalar function of the complex-valued

coefficient vector, a.

Standard optimization theory applied to function J(a) in

Equation (7-20) leads to an equation of the form

(7-21) R119 - [12

The set of linear equations (7-21) can be solved for a using any

one of various techniques (including Cholesky factorization since

matrix R 11 is Hermitian). Such a solution is of the form
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(7-22) a = R_ 12

Once the optimum coefficients are available, the forward linear

prediction error can be obtained using Equations (7-13) and (7-

20); specifically,

(7-23) if = j°(a) = rH a+ r22 = r H R_1r-12- 22 22 -12 11-12

where J](a) denotes the optimum value of the Jacobian. Thus, the

standard approach to the ARLS method is to implement Equations (7-

22) and (7-23).

A preferred alternative (from accuracy and computational

considerations) to the approach outlined above is presented in

Appendix A for the 1-D multichannel ARLS. With straightforward

modifications, the approach in Appendix A applies also to the

2DARLS, and is summarized next. The first step is to combine

Equations (7-21) and (7-23) into a single matrix-vector equation,

(7-24) R[a]=[R,, r,2][@]=[]

From the structure of matrix R as presented in Equation (7-18), it

follows that matrix R admits a factorization of the form

(7-25) R =XHX

where X is the data matrix of the normal equations in least-

squares linear prediction. Appendix A states the conditions that

must be satisfied for matrix X to have full rank. Assuming those

conditions are satisfied, then matrix X admits a QR decomposition

of the form
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(7-26) X = QU

where Q is a unitary matrix, and U is a complex-valued, full-rank,

upper-triangular matrix. It follows from Equations (7-25) and (7-

26) that

(7-27) R = XHX = UHU

Matrix U admits a partitioning analogous to that in Equation (7-

19); that is,

[U11  !412

(7-28) U = 10] U22

[O1] [0]]

where U11 is a full-rank upper-triangular matrix, U22 is a non-zero

scalar, and U12 is a column vector with no particular properties.

It follows from Equations (7-24), (7-27), and (7-28) that

H lH 1 [1H
(7-29) U11112 ]

Hu Hu U+l * I

Equation (7-29) separates into the following two equations,

(7 -30 ) U H 1U 11 H-U l

(7-31) If = uL U11a+u 12 + u2 u22

Elimination of uH1 from both sides of Equation (7-30) leads to

(7-32) U1 1 a =-u 1 2
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and then a can be obtained as

(7-33) a -U1

Substitution of Equation (7-33) into Equation (7-31) results in

(7-34) fI=U22U22

Equations (7-33) and (7-34) constitute the desired solution. A

preferred alternative to the inverse calculation in Equation (7-

33) is to solve Equation (7-32) using back-substitution since
matrix U11 is upper-triangular. Back-substitution is both accurate

and efficient. Thus, the major computational load involved in

solving for a and If is the calculation of the QR decomposition.

For the case where the secondary data set has more than one

element, K >1, the four processing options identified in Appendix

A apply directly. However, analyses carried out to date indicate

that the block approaches generate better parameter estimates.

7.2 Two-Dimensional PAMF Detection for STAP Applications

The 2-D PAMF is an extension of the 1-D multichannel PAMF.

In fact, the structure is analogous to that described by

Rangaswamy and Michels (1997) and by Roman et al. (1998), as

suggested by inspection of the block diagram in Figure 7-1.

However, the entries of the blocks in Figure 7-1 are different

from those corresponding to the PAMF. Most significantly, in the

2-D PAMF the parameters are estimated using the 2DARLS algorithm,

and the whitening filter is a 2-D scalar filter which carries out

spatial and temporal whitening jointly. In the PAMF the whitening

is carried out in two steps: first temporal and then spatial.
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With respect to Figure 7-1, the unit-variance 2-D sequence

{v(n,k)} is obtained from the whitened sequence {F(n,k)} as

1
(7-35) v(n,k) = -1- s(n,k) 0< n5 <N-Pd-1; 0 < k:< J-Ps-1

and the notation v(n,k) <- v_ indicates conversion from 2-D sequence

into column vector, following any convention for the mapping of

the sequence elements into a vector. Finally, the test statistic

is calculated as

(7-36) A= Is- I2
sHs

Notice that this expression is analogous to the vector form of

Equation (2-17), but the vector variables have very distinct

meaning.

PRIMARY

DATA TWO 0 e(n,k) STANOARI v(n,k) "* v
x(n,k) WHITENING DEVIATIOI

FILTER SCALING

SECONDARY (a(ids)) Lue TEST
DATA DF"TER DETECTION STATISTIC

x(n,kl Ho) PARAMETERE TEST STATISTI( A
CALCULATIOt CALCULATION

{a(idlis) de

STEERING

e(n,k) WHITENING DEVIATIOI-
FILTER SCALING

Figure 7-1. Two-dimensional PAMF STAP and detection architecture.
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8.0 SUMMARY AND FUTURE WORK

The generic STAP and detection architecture introduced herein

covers the MF as well as three new STAP algorithms, orthogonal

projection (OP), maximum correlation (MC), and OP using canonical

variables (OPCV). These algorithms have potential for significant

dimensionality reduction, while being based on the optimization of

probabilistic criteria.

Future work includes further development of the theoretical

relationships between the STAP methods herein and others, such as

the multistage Wiener filter. Another aspect of future work is

the software-based analysis of detection performance of the three

methods for a variety of configurations under known-covariance as

well as unknown-covariance conditions. For each STAP algorithm

several distinct test statistics can be defined, and each test

statistic exhibits different performance properties, including

CFAR. The application of alternative test statistics should be

investigated. In the context of the adaptive (unknown-covariance)

formulation of the algorithms, the utilization of structured

covariance estimates instead of sample covariance estimates should

be investigated also.

The 2-D PAMF constitutes a significant extension to the PAMF

that may yield computational and or performance advantages in

relation to the PAMF-LS (which is the leading candidate among the

alternative PAMF implementations). Computational advantages are

possible specially for cases wherein the number of channels is

large because the PAMF-LS channel requires identification of P JxJ
matrices, whereas the 2DARLS requires identification of Pd PsxPs
matrices with Pd=P and Ps•J. Performance advantages may arise

due to the enhanced modeling capability of the 2DARLS along the

spatial axis.
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Future work for the 2-D PAMF includes software-based analysis

of detection performance, specially in relation to other methods,

including the 1-D multichannel PAMF-LS. Such analyses should

include also the application of alternative test statistics.

Recent work by SSC personnel in detection of anti-tank mines using

ground penetrating radar demonstrates the potential for wide

applicability of the 2-D PAMF and other related methods to images.
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APPENDIX A. AUTO-REGRESSIVE LEAST-SQUARES MODEL IDENTIFICATION

This appendix presents the least-squares (LS) identification

algorithm for multichannel auto-regressive (AR) processes. Also

presented are the options adopted for its software implementation

in the context of the parametric adaptive matched filter (PAMF)

for space-time adaptive processing (STAP) in airborne surveillance

phased array radar systems. In addition, simulation analysis

results are presented for the algorithmic options discussed

herein. The presentation herein serves as documentation for the

SSC-generated MATLAB function arls. The algorithmic discussions are

brief since details are available in texts such the one by Marple

(1987). However, software implementation aspects unavailable

elsewhere are discussed herein.

A.1 Multichannel Least-Squares Formulation

Consider the problem of fitting an AR model of order P to a

zero-mean, stationary (at least in the wide sense), finite-

duration sequence {x(n) I n = 0,1, ... , N-lI, with x(n) CJ. That is, it

is desired to obtain a set of constant matrix coefficients {A(k)Ik=
1, 2, ... , P}, with A(k) e &xJ, and a covariance matrix uu E CJxJ such

that the random process {x(n)} (of which the given sequence is a

particular finite-duration realization) satisfies the following

equation,

P

(A-i) x(n) =-•AH(k)x(n- k)+u(n)
k=1

where {&(n)} is the zero-mean input white sequence, with u(n) E Cj and

Ruu = E[u(n)UH(n)]. If the process {x(n)} satisfies Equation (A-l),

then it is said to be an AR process of order P, and is denoted as

AR(P).
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The unknown parameters, Ruu and {A(k)}, are estimated via

minimization of the error squared. That is, let _(n) denote the

forward linear prediction error of the AR(P) model,

P
(A- 2) _•(n) = ?i(n) + -I AH(k)xý(n -k) n = P, P+1,.., N-1

k=1

Then, the function (Jacobian) to be minimized is of the form

N-i

(A-3) J = tr[yf_] = I_,H(n)_(n)
n=P

where the forward linear prediction error matrix, If, is defined as

N-I
(A-4) If =I K_(n) pH(n)

n=P

If the AR(P) system is an appropriate fit to the data, the

prediction error matrix is an estimate of the covariance matrix of

the input noise; specifically,

(A-5) A N-P

Marple (1987) shows that minimization of the function J leads to

the following block matrix linear equation,R x(, 0) ... Rx0P1x(,P A(P) o[]-
<• •R/x( -1,,o) --.. Rx(P-1,,-1) " Rx(P-1,P)/ _•l)_/= [0]'

L-x(T0) ... Rx•,P--1) f(P J k J
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where I e 9SJxJ is an identity matrix, and Rx(ij)E CJxJ is of the form

N-i-P

(A-7) Rx(i,j) = __x(n+i)xH(n+j) (i,j) = (0,0),..., (P,P)
n=o

The purpose of the partitions introduced explicitly in Equation

(A-6) is made clear in Section A.2. In compact notation, Equation

(A-6) can be expressed as

(A-8) R I J[R 2 , R2 2 ]J 1j0[J

with R e CJ(P+I)xJ(P+I), Rll - CJPxJP R12 E CJPxJ R2 1 e CJxJP R2 2 e •JxJ

and

A(P)

(A-9) A A(P-1)

A(1)

Equations (A-6) and (A-8) are of the same structure as the

corresponding multichannel Yule-Walker normal equation, except

that matrix R is Hermitian only (whereas the corresponding matrix

in the Yule-Walker formulation is both Hermitian and block

Toeplitz). The diagonal sub-matrices, R11 and R22, are Hermitian

also. Furthermore, for appropriate values of N and P, matrices R,

Rill and R22 are positive definite.

The formulation presented above is referred to as the

covariance (or non-windowed) method of least-squares linear

prediction. This terminology arises from its early usage in

speech processing applications, and is misleading in the context

of modern stochastic algorithms. Specifically, R is neither a
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structured covariance matrix, nor a sample (maximum likelihood

estimate) covariance matrix (except for the case where P= N-1, as

noted in Section A.3). It is important to note that the ordering

of the AR coefficients in block matrix A and the partitioning and

definitions in Equations (A-6)-(A-9) differ from the usual

conventions (Marple, 1987). This variation is adopted herein

based only on considerations of the software implementation of the

method, and there is strict equivalence between the results

obtained using either notation.

The structure of matrix R as presented in Equations (A-6) and

(A-7) allows a factorization of the form

(A-10) R=X xHx

where Xe C(N-P)xJ(P+1) is the data matrix of the normal equations in

the covariance method of least-squares linear prediction, and is

defined as

xH(o) xH(1) ... xH(p)

xH(1) xH(2) ... xH(p + 1)

(A-11) X=
XH(p) xH(p+1) ... _H(2p)

L 2H(N - 1- P) xH(N - P) ... 2xH(N_- 1)j

The form in Equation (A-Il) corresponds to the case where N >>P.

A.2 Normal Equations Solutions

The normal equations (A-6) (or equivalently, (A-8)) can be

solved using a variety of techniques, including the singular value

decomposition (SVD) . However, two specific techniques have

features that are important in the context of interest herein.
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One technique operates directly on the data matrix X, whereas the

other exploits the Hermitian property of matrix R. Each technique

generates one set of AR(P) coefficients given one finite-duration

realization of the array output process. Both techniques require

matrix R to be positive definite in order to generate a complete

solution (both A and If). Conditions are established which insure

that R is positive definite. In addition, the positive semi-

definite case is considered also.

A.2.1 DATA-BASED SOLUTION

Consider first the case where the number of rows in the data

matrix X is equal to or larger than the number of columns; that

is, when the following condition is satisfied:

(A-12) N- PŽJ(P+ 1) =JP+J

Condition (A-12) insures that rank[X]= J(P + 1) with probability one

due to the randomness of the data in the context of airborne

surveillance radar applications. With Condition (A-12) satisfied,

the QR decomposition of X is of the form

(A-13) X = QU

where Q e C(N-P)x(N-P) is a unitary matrix, and U e C(N-P)xJ(P+1) is an

upper-triangular matrix with rank[U] =J(P + 1). It follows from

Equations (A-10) and (A-13) that

(A-14) R=XHX= UHU

Matrix U admits a partitioning analogous to that in Equation (A-

8); that is,
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U11 U12
(A-15) U [0] U 2 2L[0] [0]]

where U11 e CJPxJP is upper-triangular with rank[U 11 ]=JP, U2 2 e &JxJ is

upper-triangular with rank[U2 2]=J, and U12 e CJPxJ with no particular

properties. It follows from Equations (A-8), (A-14), and (A-15)

that

UA -16 /u-u, H U UH
A 1) U12U12 +U22U22

Equation (A-16) separates into the following two equations,

(A-17) U11UlA=-U11U

(A1) UH UA H U UH

(A-18) ,f = U12 U1 1 A+U 12U 12  22U22

Pre-multiplication of both sides of Equation (A-17) by UlH leads

to

(A-19) U11A = -U12

and then A can be obtained as

(A-20) A = -U1U 1 2

Substitution of Equation (A-20) into Equation (A-18) then results

in

(A-21) If 22U22

Equations (A-20) and (A-21) constitute the desired solution.
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Equation (A-20) expresses the solution for A in direct form,

which is convenient for obtaining the solution for I. However, an

alternative approach to a matrix inverse calculation followed by a

matrix-matrix multiplication is to solve Equation (A-19) via back-

substitution because U 11 is upper-triangular. Since U1 1 is

positive definite, this alternative is the most efficient

computationally (Golub and Van Loan, 1989). The increase in

computational efficiency over the direct inverse approach is

proportional to the number of columns of U12 .

As stated above, Condition (A-12) insures that the data

matrix X has rank equal to its smaller dimension (column rank),

and thus U11 and U2 2 are both positive definite. This condition

leads to an upper bound for model order (P), given N and J. The

upper bound condition is expressed as

(A-22) P•Pmax =fix[ N-J BOUND FOR BOTH A AND IfI J+l I

where the operator fix[-] truncates a real-valued number. This bound

is very tight, and implies that N Ž2J +1 so that Pmax£ 1.

A more relaxed bound is possible if only the AR coefficients

are desired, or if the values of the parameters J, N, and P result

in a data matrix X with fewer rows than columns (such is indeed

the case when N = J, even if P is small). In such case the

condition that must be satisfied is

(A-23) JP+J>N-PŽ!JP

where the second inequality follows from N - P Ž rank[R 1 1] = JP.

Condition (A-23) insures that rank[X]=N-PŽJP with probability one
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due to the randomness of the data. Assuming Condition (A-23) is

satisfied, the form of matrix U in the QR decomposition of X is

(A-24) U=[ull U121
[[0] U22]

where U11 e CJPxJP is upper-triangular with rank[U 11] = JP, and U12 e
CJpxJ with no particular properties, as before. However, now U22 C

C(N-P-JP)xJ with rank[U 22 ] = N- P-JP <J. The structure of U22 is still

upper-triangular, but the number of rows is less than the number

of columns. In fact, when Condition (A-23) is met with equality

on the right (that is, N- P = JP) , matrix U22 is non-existent.

Nevertheless, the AR coefficients are obtained by solving Equation

(A-19), as before.

The second inequality (N-P_>JP) in Condition (A-23) leads to

another upper bound for model order, given N and J. In this case,

the upper bound condition is expressed as

(A-5) P•max =f 1[JN BOUND FOR A ONLY

This bound is less tight than Bound (A-22), and implies that NŽ>J+

1 so that Pmax Ž>1.

A.2.2 COVARIANCE-BASED SOLUTION

As in Section A.2.1, consider first the case where Condition

(A-12) is satisfied. Since X has full rank in this case, it

follows that R is positive definite (rank[R] = JP + J) with

probability one due to the randomness of the data (using the SVD

it is easy to show that rank[R]= rank[X]). Furthermore, R11 and R22

are Hermitian and positive definite also (rank[R11 =JP; rank[R 22 ] = J).
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Based on the partitions defined in Equations (A-6) and (A-8),

the normal equations separate into two equations,

(A-26) R 1 1 A = - R 12

(A-27) if= R 2 2 + R 2 1 A

As for the data-based solution, Equation (A-26) is utilized to

solve for A, and then If is obtained via Equation (A-27). Equation

(A-26) can be solved via a matrix inverse calculation followed by

a matrix-matrix multiplication. However, since R11 is Hermitian

and positive definite, a more efficient approach (based on the

Cholesky decomposition) is possible.

The Cholesky decomposition of a Hermitian, positive definite

matrix Rl1 is of the form

(A-28) Rll = CHC

where Ce CJPxJP is upper-triangular with real- and positive-valued

elements along the main diagonal, and with rank[C]=JP. It follows

from Equations (A-26) and (A-28) that

(A-29) CHCA = - R 12

Given the triangular structure of C, matrix A is solved for using

back-substitution twice. Equations (A-27)-(A-29) constitute the

desired solution.

The model order upper bound in Equation (A-22) is valid also

for the covariance approach since rank Condition (A-12) applies.

Similarly, the bound in Equation (A-25) is valid also for the

covariance approach when Condition (A-23) holds and only the AR

coefficients are required (rank[R]= rank[X] holds for all cases). When
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Condition (A-23) is satisfied as JP+J > N- P >JP (that is, without

equality on the right), Equation (A-27) generates a non-zero value

for 1, but such solution is incorrect because it is generated with

a rank deficiency in the covariance matrix. Furthermore, when

Condition (A-23) is met with equality on the right (that is, N-P=

JP), the matrix If generated via Equation (A-27) is the numerical

null matrix because the rank deficiency is maximum (within the

limits of Condition (A-23)). If Condition (A-23) is violated from

the right (that is, if N-P<JP), then the rank defiency is

sufficiently large to introduce error in the calculation of A

also.

A.3 Surveillance Scenario Software Implementation Options

As in Section 1.1, consider an airborne side-looking

configuration of a J-element linear phased array radar for moving

target detection. In this context, the data to be processed is

the return from N pulses as collected by the J array elements for

each one of KT range bins. This JxNxKT set of data is the so-

called data cube. A detection decision is desired for each range

bin in the data cube. Further, the decision approach is adaptive

in order to account for possible lack of statistical stationarity

in the data cube. The favored approach is sequential in nature;

that is, each range bin is tested in a pre-determined order. At

each decision instant, the range bin to be tested is referred to

as the primary data. Also, a subset of K < KT range bins in a

neighborhood near the primary data is utilized as training data

for the processing algorithm and the detection rule. This data

set is referred to as the secondary data. The range bins in the

secondary data set are assumed to provide target-free, independent

realizations of the array output process.

The PAMF processing and detection rule utilizes the secondary

data to generate a whitening filter for the primary data, and then
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applies a detection rule based on the matched filter concept. One

possible configuration utilizes the least-squares (LS) algorithm

to identify a set of AR(P) parameters that fit the secondary data,

and then utilizes the parameters as a moving-average filter to

process the primary data. The filter output constitutes a

residual sequence to which the detection rule is applied. Such

configuration is referred to as the PAMF-LS.

One significant aspect of the surveillance radar context is

the availability of more than one realization of the data to be

utilized for the model identification step of the PAMF-LS. Within

such context, the two solution approaches in Section A.2 lead to

three distinct software implementation options of interest. These

options are summarized next, and a descriptive name is provided

for each. The given names link each algorithm with its software

implementation in a MATLAB-based function generated by SSC and

named arls.

1. COEFFQR: QR decomposition of data matrices and model

parameter averaging.

a) Form K data matrices, one for each secondary data

range bin.

b) Generate K sets of model parameters (AR

coefficients and prediction error matrices) via the

data matrix QR decomposition approach.

c) Average the K sets of model parameters to obtain

the desired solution.

2. COEFFCHOLESKY: Cholesky factorization of covariance

matrices and model parameter averaging.

a) Generate K covariance matrices, one for each

secondary data range bin.

b) Generate K sets of model parameters via the

covariance matrix Cholesky factorization approach.
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c) Average the K sets of model parameters to obtain

the desired solution.

3. DATABLKQR: QR decomposition of block data matrix.

a) Form a block data matrix with block rows consisting

of the K data matrices (one data matrix for each

secondary data range bin).

b) Generate the desired model parameter solution via

the QR decomposition approach applied to the block

data matrix.

4. COVARCHOLESKY: Covariance averaging and Cholesky

factorization of averaged covariance.

a) Generate K covariance matrices, one for each

secondary data range bin.

b) Average the K covariance matrices to obtain a

single covariance matrix.

c) Generate the desired model parameter solution via

the covariance matrix Cholesky factorization

approach.

Options 1 and 2 utilize the LS solution approaches in a single-

realization context, so the algorithmic approaches are applied as

discussed in Section A.2.1. The rank conditions and model order

upper bounds in Section A.2.1 apply also. Options 3 and 4,

however, lead to a different rank condition and model order upper

bound.

Consider first Option 4. For this option, the covariance

matrix R for Equation (A-8) is generated as the average of K

single-range-bin covariance matrices; namely,
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(A-30) R * Rk + kkK= XkX k

k=1 k=1

where Xk denotes the data matrix for the kth range bin, and Rk is

the covariance for the kth range bin. Covariance matrix R as

defined in (A-30) is a valid covariance matrix for the normal

equations (A-8) because a set of normal equations is valid for

each of the individual single-range-bin covariance matrices. As

stated previously, the covariance-based solution to the normal

equations (involving both A and If) exists and is unique when R

has full rank, rank[R]=JP+J. The conditions under which R attains

full rank are established next.

Under Option 4, the conditions under which R attains full

rank involve the system parameters J, N, and P, as before, but K

now plays a key role. Consider first the cases where N-PŽ!JP+J.

For these cases each Xk has full column rank, rank[Xk]=JP+J, and

consequently, each Rk has full rank, rank[Rk]=JP+J (see Section

A.2.2). Matrix R has full rank also since it is an average of K

independent, full-rank realizations of the covariance matrix.

Consider now the cases where N-P<JP+J. For these cases

each Xk has full row rank, rank[Xk]=N-P, and consequently, each Rk

is rank-deficient, rank[Rk]= N-P (see Section A.2.2). However, the

rank of R increases by N - P for every Rk added to the sum, up to

the maximum possible rank value of JP+J. In other words, rank[R]=
min[(N - P)K, (P + 1)J]. Thus, the condition for a to have full rank

under Option 4 is

(A-31) (N - P)K Ž (P + 1)J

An associated model order upper bound, as in Equations (A-22) and

(A-25), is meaningless for this option. In fact, Condition (A-31)
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allows the AR model order to be as large as P =max= N -1, provided

K is correspondingly large (K ŽJN if P = N-1). This set of values

for the system parameters is unlikely to be adopted in the context

of the PAMF-LS because experience shows that low model orders

suffice to provide excellent detection performance in most cases.

However, it is appropriate to note that for P = N-1 and K Ž JN,
matrix R generated as in Equation (A-30) is the so-called sample

covariance matrix, and is the maximum likelihood estimate of the

covariance matrix of vector x [xH(0) xH() ... xH(N1-)]H.

Consider now Option 3, the QR decomposition of the block data

matrix. Define the block data matrix X E CK(N-P)xJ(P+1) as[X1(A-32) X = X2

ýK

It is simple to verify that this block data matrix is related to

the averaged covariance matrix in Equation (A-30) as

K 1 K

(A-33) R=X X= XkXk=X - Rk

k=1 k=1

The leftmost equality is of the same form as Equation (A-10), so

the approach defined in Section A.2.1 can be applied directly.

Specifically, the QR decomposition of the block data matrix X is

generated as in Equation (A-13), and the unitary matrix in the

decomposition is eliminated from the formulation as in Equation

(A-14). The solution for the model parameters is obtained using

only the upper-triangular matrix factor in the decomposition, as

in Equations (A-20) and (A-21). The condition for X to have full

rank is identical to the condition for R to have full rank;
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namely, Condition (A-31). This follows from the leftmost equality

in Equation (A-33). The various comments regarding the lack of AR

model order bound for Option 4 apply without modification to

Option 3 also.

From a structural standpoint, Options 3 and 4 can be used

over the widest set of conditions, and constitute the only

alternatives in cases where J= N (in such cases Condition (A-12)

fails). The relaxation offered by Condition (A-23) for Options 1

and 2 is important in the application context considered herein

because the model estimate of the residual covariance matrix is

neglected in the preferred configuration of the PAMF-LS (the

maximum likelihood estimate or the time-averaged estimate are used

instead). In terms of accuracy, the four options generate

practically identical results when Condition (A-12) is satisfied

strongly; namely, N-P>>JP+J. Results from all four options are

very similar also when Condition (A-12) is satisfied with

equality; namely, N-P=JP +J. From a computational viewpoint,

there appears to be a set of system parameter values (J, N, P, K)

wherein each algorithmic option executes more efficiently than the

other three. A detailed operational count for each option is

required in order to address this issue appropriately.

The model order upper bound for the LS algorithm presented in

[Roman et al., 2000] is based on Condition (A-31), and is correct

from an algebraic point of view. However, the solution approach

adopted in the paper is the block method of Option 3 (DATABLKQR),

and for both block methods it is most appropriate to view the

issue of model order as a condition to be satisfied rather than as

a bound, for the reasons stated in the paragraph following

Condition (A-31), and summarized next. Namely, when K >1 and a

block method is used, even a small number of secondary data sets

allows a solution for typical scenario parameters (J and N) and

practical values of model order.
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A.4 Simulation Analysis Results

Simulation-based analyses to compare the LS algorithmic

approaches have been carried out for a variety of system parameter

values and scenario conditions, and a subset of those results is

presented herein. Of specific interest are results obtained for

the cases considered in [Romdn et al., 20001, and the inclusion of

ground clutter temporal correlation model type as another

parameter variation. Specifically, two model types for clutter

temporal correlation are considered: exponential-shaped, and

Gaussian-shaped.

The results in [Roman et al., 2000] were generated using the

algorithmic approach of Option 3. In most analyses carried out by

SSC, Options 1 and 2 generate very similar results, and Options 3

and 4 also generate similar results. Thus, results are presented

only for Options 1 and 4. Furthermore, the cases considered

represent only the J<<N Analysis, and only one value of output

signal-to-interference-plus-noise ratio (SINR). The J= N Analysis

is considered in [Roman et al., 2000].

The conditions and parameters for the J<< N Analysis are: J= 4

channels, N=32 pulses, 0w=1 normalized receiver noise standard

deviation, CNR=40dB clutter-to-noise ratio, and fts= 0.0 and ftd=

0.3336 target normalized spatial and Doppler frequencies,

respectively. Three sets of scenario conditions and two values of

secondary data size are considered. Case 1 is for y =0deg crab

angle and no jamming. Case 2 is for y = 20 deg and no jamming.

Case 3 is for y=Odeg and two point-source barrage jammers: one

jammer is at -s=-0.35 jammer normalized spatial frequency with JNR

=45dB jammer-to-noise ratio, and the other jammer is at fjs=0.2

with JNR=50dB. For each case two values of secondary data size

are considered: K=2JN=256 (the Brennan rule-of thumb value for 3
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dB performance), and K=2J=8. For this Monte Carlo (MC) analysis,

PFA .001 probability of false alarm, using NMc=50 repetitions of

N PFA = 2,000 independent data realizations each. Also, P=3 model

order is used, as in [Romdn et al., 2000].

Tables A-I and A-2 present probability of detection (PD)

results for the three simulation cases at SINR = 9 dB and the

exponential-shaped model for ground clutter temporal correlation.

The sample standard deviation of the PD estimates, denoted as

SD[PD], is presented also in both tables. In addition, both tables

include detection results for the optimal matched filter (MF) and

the constant false alarm rate (CFAR) adaptive matched filter

(AMF). The MF results are analytical, whereas the CFAR AMF

results are simulation-based. Table A-i results are for K =2JN=

256, and compare with the respective single points in the SINR vs.
PD curves of Figures 4, 6, and 8 in [Roman et al., 2000]. Table

A-2 results are for K=2J=8, and compare with the respective
single points in the SINR vs. PD curves of Figures 5, 7, and 9 in

[Roman et al., 2000].

Examination of the results in Tables A-I and A-2 indicates

that both PAMF-LS implementations out-perform the CFAR AMF, in

terms of detection as well as variability (smaller standard

deviation), for both values of K (the CFAR AMF values in both

tables are for K = 2JN = 256). Notice also that both PAMF-LS

implementations perform almost identically for the large K value,

and the performance is close to that of the optimal MF. However,

for the small K value the PAMF-LS using covariance averaging

(Option 4) out-performs, also in terms of detection and

variability, the PAMF-LS using coefficient averaging (Option 1).

Simulation-based results obtained by SSC for other analyses and

conditions reflect the same trend.
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PAMF-LS PAMF-LS
CASE MF CFAR AMF COEFF AVG COVAR AVG

(P =3) (P =3)
CRABCANGE NO. OF

ANGLE JAMMERS PD PD SD[PD] PD SD[PD] PD SD[PD]
(deg)I

0 0 0.8635 0.4571 0.0397 0.8190 0.0118 0.8242 0.0104

20 0 0.8635 0.4610 0.0382 0.8206 0.0125 0.8219 0.0116

0 2 0.8635 0.4565 0.0375 0.8229 0.0125 0.8280 0.0118

Table A-l. Detection performance of Options 1 and 4 of the PAMF-
LS for the three simulation cases with SINR = 9 dB, K = 2JN = 256, and

the exponential-shaped model for clutter temporal correlation.

PAMF-LS PAMF-LS
CASE MF CFAR AMF COEFF AVG COVAR AVG(K=2JN) (P = 3) (P =3)

CRABCANGE NO. OF P
ANGLE JAMMERS PD SD[PD] PD SD[PD] PD SD[Po](deg)JAMR

0 0 0.8635 0.4571 0.0397 0.7542 0.0270 0.7835 0.0690

20 0 0.8635 0.4610 0.0382 0.7573 0.0893 0.7971 0.0575

0 2 0.8635 0.4565 0.0375 0.7609 0.0812 0.7822 0.0661

Table A-2. Detection performance of Options 1 and 4 of the PAMF-
LS for the three simulation cases with SINR=9dB, K=2J=8, and
the exponential-shaped model for clutter temporal correlation.

Results of a second set of simulation runs with identical

parameters and scenario conditions, except for the ground clutter

temporal correlation model, are presented in Tables A-3 and A-4.

For these tables the Gaussian-shaped model was adopted. Table A-3

results are for K = 2JN = 256, and Table A-4 results are for K = 2J =

8. Thus, Tables A-3 and A-4 relate to Tables A-1 and A-2,

respectively.
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Examination of the results in Tables A-3 and A-4 by

themselves leads to identical conclusions as obtained for Tables

A-i and A-2, with the distinction that the performance of the

PAMF-LS is closer to that of the MF. A comparison of Tables A-3

and A-4 with Tables A-i and A-2, respectively, indicates that both

PAMF-LS implementations perform better for the Gaussian-shaped

clutter temporal correlation model for both values of K. This is

in contrast to results observed in previous analyses involving

other PAMF implementations. Specifically, both the PAMF in

conjunction with the Strand-Nuttal AR model identification

algorithm [Nuttall, 1976; Strand, 19771 and the PAMF in

conjunction with the canonical correlations state variable model

identification algorithm exhibit degraded performance for the

Gaussian-shaped clutter temporal correlation model. Other

simulation-based analyses carried out by SSC further support these

observations and conclusions.

PAMF-LS PAMF-LS
CASE MF CFAR AMF COEFF AVG COVAR AVG

(P = 3) (P = 3)
CRAB

ANGLE JAMMERS D PD SD[PDI PD SD[Pd PD SD[P D(deg)JAER

0 0 0.8635 0.4654 0.0507 0.8360 0.0113 0.8383 0.0103

20 0 0.8635 0.4622 0.0495 0.7925 0.0173 0.8007 0.0111

0 2 0.8635 0.4643 0.0498 0.8269 0 0129 0.8290 0.0114

Table A-3. Detection performance of Options 1 and 4 of the PAMF-
LS for the three simulation cases with SINR=9dB, K=2JN=256, and

the Gaussian-shaped model for clutter temporal correlation.
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PAMF-LS PAMF-LS
CASE MF (A A COEFF AVG COVAR AVG

(K=2JN) (P =3) (P 3)
CRABCANGE NO. OF

ANGLE JAMMERS PD PD SD[PD1 PD SD[PD1 PD SD[PD1
(deg)

0 0 0.8635 0.4654 0.0507 0.7829 0.0670 0.8054 0.0517

20 0 0.8635 0.4622 0.0495 0.7417 0.0937 0.7932 0.0699

0 2 0.8635 0.4643 0.0498 0.7798 0.0724 0.8035 0.0626

Table A-4. Detection performance of Options 1 and 4 of the PAMF-
LS for the three simulation cases with SINR = 9 dB, K = 2J = 8, and

the Gaussian-shaped model for clutter temporal correlation.

In closing, it is important to mention that the AR model

order value utilized herein is the same value utilized in [Roman

et al., 20001, in order to allow direct comparison between both

sets of results. Thus, the model order has been fixed without the

benefit of optimization for the covariance-averaging algorithmic

option and the Gaussian-shaped model for the ground clutter

temporal correlation. Early results from an on-going simulation-

based analysis indicate that P=2 is possibly a better choice. In
particular, for the y=20deg case in Table A-3, PD = 0.8236 and

SD[PDI=0.0101 using P=2, and for the y=20deg case in Table A-4,

the detection and variability results are very similar using P=2.

Based on statistical considerations, the lowest-order model that

gives acceptable performance should be adopted.

109



REFERENCES

P. Beckmann

(1967) Probability in Communication Engineering, Harcourt,

Brace & World, Inc., New York, NY.

L. E. Brennan and I. S. Reed

(1973) "Theory of adaptive radar," IEEE Transactions on

Aerospace and Electronic Systems, Vol. AES-9, No. 2

(March), pp. 237-252.

L. Cai and H. Wang

(1990) "On adaptive filtering with the CFAR feature and its

performance sensitivity to non-Gaussian interference,"

Procs. of the 24th Annual Conference on Information

Sciences Computer Siences, pp. 558-563.

W.-S. Chen and I. S. Reed

(1991) "A new CFAR detection test for radar," Digital Signal

Processing, Vol. 1, No. 1 (January), pp. 198-214.

E. Conte, M. Lops, and G. Ricci

(1995) "Asymptotically optimum radar detection in compound-

Gaussian clutter," IEEE Transactions on Aerospace and

Electronic Systems, Vol. 31, No. 2 (April), pp. 617-625.

(1996) "Adaptive matched filter detection in spherically

invariant noise," IEEE Signal Processing Letters, Vol.

3, No. 8 (August), pp. 248-250.

D. E. Dudgeon and R. M. Mersereau

(1984) Multidimensional Digital Signal Processing, Prentice-

Hall, Englewood Cliffs, NJ.

110



J. S. Goldstein and I. S. Reed

(1997) "Theory of partially adaptive radar," IEEE Transactions

on Aerospace and Electronic Systems, Vol. 33, No. 4

(October), pp. 1309-1325.

J. S. Goldstein, I. S. Reed, and L. L. Sharf

(1998) "A multistage representation of the Wiener filter based

on orthogonal projections," IEEE Transactions on

Information Theory, Vol. 44, No. 7 (November), pp. 2943-

2959.

G. H. Golub and C. F. Van Loan

(1989) Matrix Computations, Second Edition, The Johns Hopkins

University Press, Baltimore, MD.

J. R. Guerci and E. H. Feria

(1996) "Application of a least-squares predictive-transform

modeling methodology to space-time adaptive array

processing," IEEE Transactions on Signal Processing,

Vol. 44, No. 7 (July), pp. 1825-1833.

H. Hotelling

(1936) "Relations between two sets of variables," Biometrika,

Vol. 28, pp. 321-377.

A. G. Jaffer, M. H. Baker, W. P. Ballance, and R. J. Staub

(1991) Adaptive Space-Time Processing Techniques for Airborne

Radar, RL Technical Report No. RL-TR-91-162, Rome

Laboratory, Rome, NY.

E. J. Kelly

(1986) "An adaptive detection algorithm," IEEE Transactions on

Aerospace and Electronic Systems, Vol. AES-22, No. 1

(March), pp. 115-127.

11l.



S. L. Marple, Jr.

(1987) Digital Spectral Analysis With Applications, Prentice-

Hall, Inc., Englewood Cliffs, NJ.

P. A. S. Metford and S. Haykin

(1985) "Experimental analysis of an innovations-based detection

algorithm for surveillance radar," IEE Proceedings, Vol.

132, Pt. F, No. 1 (February), pp. 18-26.

J. H. Michels

(1991) Multichannel Detection Using the Discrete-Time Model-

Based Innovations Approach, Rome Laboratory Technical

Report No. RL-TR-91-269, Rome Laboratory, Rome, NY.

J. H. Michels, T. Tsao, B. Himed, and M. Rangaswamy

(1998) "Space-time adaptive processing (STAP) in airborne radar

applications," Procs. of the IASTED International Conf.

on Signal Processing and Communications, Canary Islands,

Spain, Feb. 11-14, pp. 445-450.

W. B. Mikhael and H. Yu

(1994) "A linear approach for two-dimensional, frequency domain

least square signal and system modeling," IEEE

Transactions on Circuits and Systems - II: Analog and

Digital Signal Processing, Vol. 41, No. 12 (December),

pp. 786-795.

A. Nuttall

(1976) Multivariate Linear Predictive Spectral Analysis

Employing Weighted Forward and Backward Averaging: A

Generalization of Burg's Algorithm, NUSC Technical

Report No. TR-5501, Naval Underwater Systems Center, New

London, CT.

112



M. Rangaswamy and J. H. Michels

(1997) "A parametric multichannel detection algorithm for

correlated non-Gaussian random processes," Procs. of the

IEEE National Radar Conf., Syracuse, NY, May 13-15, pp.

349-354.

F. C. Robey, D. R. Fuhrmann, E. J. Kelly, and R. Nitzberg

(1992) "A CFAR adaptive matched filter detector," IEEE

Transactions on Aerospace and Electronic Systems, Vol.

AES-28, No. 1 (January), pp. 208-216.

J. R. Roman

(1998a) Adaptive Sidelobe Canceling Using Complex-Valued

Canonical Variables, AFRL Technical Report No. AFRL-SN-

RS-TR-1998-46, Air Force Research Laboratory, Sensors

Directorate, Rome Research Site, Rome, NY (March).

(1998b) CFAR for the PAMF Detector, SSC Technical Communication

No. SSC-TC-98-01 for Air Force Research Laboratory

Contract No. F30602-96-C-0085, Scientific Studies

Corporation, Palm Beach Gardens, FL (March).

J. R. Roman and D. W. Davis

(1993a) Multichannel System Identification and Detection Using

Output Data Techniques, Rome Laboratory Technical Report

No. RL-TR-93-141, Rome Laboratory, Rome, NY.

(1993b) State-Space Models for Multichannel Detection, Rome

Laboratory Technical Report No. RL-TR-93-146, Rome

Laboratory, Rome, NY.

(1997) Two-Dimensional Processing for Radar Systems, Rome

Laboratory Technical Report No. RL-TR-97-127, Rome

Laboratory, Rome, NY.

113



J. R. Roman, D. W. Davis, and J. H. Michels

(1997) "Multichannel parametric models for airborne phased

array clutter," Procs. of the IEEE National Radar Conf.,

Syracuse, NY, May 13-15, pp. 72-77.

(1998) "Parametric-based space-time adaptive processing and

detection in airborne surveillance radar systems,"

Procs. of the IASTED International Conference on Signal

and Image Processing (SIP '98), Las Vegas, NV, October

28-31, pp. 290-296.

J. R. Romdn, M. Rangaswamy, D. W. Davis, Q. Z. Zhang, B. Himed,

and J. H. Michels

(2000) "Parametric adaptive matched filter for airborne radar

applications," IEEE Transactions on Aerospace and

Electronic Systems, Vol. 36, No. 2 (April), pp. 677-692.

L. L. Scharf and L. T. McWhorter

(1996) "Adaptive matched subspace detectors and adaptive

coherence," Procs. of the 30th Asilomar Conf. on

Signals, Systems, and Computers, Pacific Grove, CA, Nov.

0. N. Strand

(1977) "Multichannel cofiplex maximum entropy (auto-regressive)

spectral analysis, " IEEE Transactions on Automatic

Control, Vol. AC-22, No. 4, pp. 634-640.

C. W. Therrien

(1981) "Relations Between 2-D and Multichannel Linear

Prediction," IEEE Transactions on Acoustics, Speech, and

Signal Processing, Vol. ASSP-29, No. 3 (June), pp. 454-

456.

(1986) The Analysis of Multichannel Two-Dimensional Random

Signals, Naval Postgraduate School Technical Report No.

NPS62-87-002, Naval Postgraduate School, Monterey, CA.

114



J. B. Thomas

(1969) An Introduction to Statistical Communication Theory, J.

Wiley & Sons, Inc., New York, NY.

J. Ward

(1994) Space-Time Adaptive Processing for Airborne Radar,

Technical Report No. TR-1015 (December), contract no.

F19628-95-C-0002, Lincoln Laboratory, Massachusetts

Institute of Technology, Lexington, MA.

V. J. Yohai and M. S. Garcia Ben

(1980) "Canonical variables as optimal predictors," The Annals

of Statistics, Vol. 8, No. 4 (July), pp. 865-869.

-U.S. GOVERNMENT PRINTING OFFICE: 20021710-038/10200

115



06/15/2024 13:58 3153301991 PUBLIC AFFAIRS PAGE 01

DEPARTMENT OF THE AIR FORCE
AIR FORCE RESEARCH LABORATORY (AFMC)

15 Jun 04

MEMORANDUM FOR DTIC-OCQ
ATTN: Larry Downing
Ft. Belvoir, VA 22060-6218

FROM: AFRL/IFOIP

SUBJECT: Distribution Statement Change

I. The following documents (previously limited by SBIR data rights) have been
reviewed and have been approved for Public Release; Distribution Unlimited:

ADB226867, "Multichannel System Identification and Detection Using Output Data
Techniques", RL-TR-97-5, Vol 1.

ADB 176689, "Multichannel System Identification and Detection Using Output Data
Techniques", RL-TR-93-141.

ADB 198116, "Multichannel Detection Using Higher Order Statistics", RL-TR-95-11.

ADB232680, "Two-Dimensional Processing for Radar Systems", RL-TR-97-127.

ADB276328, "Two-Dimensional Processing for Radar Systems", AFRL-SN-RS-TR-2001-
244.

2. Please contact the undersigned should you have any questions regarding this
memorandum. Thank you very much for your time and attention to this matter.

STINF~tficer

Information Directorate
315-330-7094/DSN 587-7094


